Combinatorial Patterns for Maps of the Interval

·
· American Mathematical Society: Memoirs of the American Mathematical Society Book 456 · American Mathematical Soc.
Ebook
112
Pages

About this ebook

In recent years, motivated by Shrkovskii's theorem, researchers have realized that a good deal of information about the dynamics of a map on the interval can be deduced from the combinatorial structure of its periodic orbits. This data can be formulated as a "forcing" relation between cyclic permutations (representing "orbit types" of periodic orbits). The present study investigates a number of new features of this relation and its generalization to multicyclic permutations (modelling finite unions of periodic orbits) and combinatorial patterns (modelling finite invariant sets). A central theme is the role of reductions and extensions of permutations. Results include: (i) a "combinatorial shadowing theorem" and its application to approximating permutations by cycles in the forcing relation; (ii) the distribution of different representatives of a given cycle in one (adjusted) map; (iii) characterization of the forcing-maximal permutations and patterns of fixed degree; and (iv) a calculation of the asymptotic growth rate of the maximum entropy forced by a permutation of given degree.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.