Category Theory in Context

· Courier Dover Publications
3.0
1 review
Ebook
272
Pages

About this ebook

"The book is extremely pleasant to read, with masterfully crafted exercises and examples that create a beautiful and unique thread of presentation leading the reader safely into the wonderfully rich, expressive, and powerful theory of categories." — The Math Association
Category theory has provided the foundations for many of the twentieth century's greatest advances in pure mathematics. This concise, original text for a one-semester course on the subject is derived from courses that author Emily Riehl taught at Harvard and Johns Hopkins Universities. The treatment introduces the essential concepts of category theory: categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads, and other topics.
Suitable for advanced undergraduates and graduate students in mathematics, the text provides tools for understanding and attacking difficult problems in algebra, number theory, algebraic geometry, and algebraic topology. Drawing upon a broad range of mathematical examples from the categorical perspective, the author illustrates how the concepts and constructions of category theory arise from and illuminate more basic mathematical ideas. Prerequisites are limited to familiarity with some basic set theory and logic.

Ratings and reviews

3.0
1 review

About the author

Emily Riehl is Assistant Professor in the Department of Mathematics at Johns Hopkins University. She received her Ph.D. from the University of Chicago in 2011 and was a Benjamin Pierce and NSF Postdoctoral Fellow at Harvard University from 2011–15. She is also the author of Categorical Homotopy Theory.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.