Galactic Dynamics: Second Edition, Edition 2

Princeton University Press
Free sample

Since it was first published in 1987, Galactic Dynamics has become the most widely used advanced textbook on the structure and dynamics of galaxies and one of the most cited references in astrophysics. Now, in this extensively revised and updated edition, James Binney and Scott Tremaine describe the dramatic recent advances in this subject, making Galactic Dynamics the most authoritative introduction to galactic astrophysics available to advanced undergraduate students, graduate students, and researchers.

Every part of the book has been thoroughly overhauled, and many sections have been completely rewritten. Many new topics are covered, including N-body simulation methods, black holes in stellar systems, linear stability and response theory, and galaxy formation in the cosmological context. Binney and Tremaine, two of the world's leading astrophysicists, use the tools of theoretical physics to describe how galaxies and other stellar systems work, succinctly and lucidly explaining theoretical principles and their applications to observational phenomena. They provide readers with an understanding of stellar dynamics at the level needed to reach the frontiers of the subject.

This new edition of the classic text is the definitive introduction to the field.


  • A complete revision and update of one of the most cited references in astrophysics

  • Provides a comprehensive description of the dynamical structure and evolution of galaxies and other stellar systems

  • Serves as both a graduate textbook and a resource for researchers

  • Includes 20 color illustrations, 205 figures, and more than 200 problems

  • Covers the gravitational N-body problem, hierarchical galaxy formation, galaxy mergers, dark matter, spiral structure, numerical simulations, orbits and chaos, equilibrium and stability of stellar systems, evolution of binary stars and star clusters, and much more

  • Companion volume to Galactic Astronomy, the definitive book on the phenomenology of galaxies and star clusters

Read more

About the author

James Binney is professor of physics at the University of Oxford. His books include Galactic Astronomy. Scott Tremaine is the Richard Black Professor of Astrophysics at the Institute for Advanced Study and a member of the National Academy of Sciences. Both are fellows of the Royal Society.
Read more

Additional Information

Princeton University Press
Read more
Published on
Oct 30, 2011
Read more
Read more
Read more
Read more
Science / Physics / Astrophysics
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Today's standard textbooks treat the theoretical structure of electric and magnetic fields, but their emphasis is on electromagnetic radiation and static-electric and magnetic fields. In this book, Eugene Parker provides advanced graduate students and researchers with a much-needed complement to existing texts, one that discusses the dynamic electromagnetism of the cosmos--that is, the vast magnetic fields that are carried bodily in the swirling ionized gases of stars and galaxies and throughout intergalactic space.

Parker is arguably the world's leading authority on solar wind and the effects of magnetic fields in the heliosphere, and his originality of thought and distinctive approach to physics are very much in evidence here. Seeking to enrich discussions in standard texts and correct misconceptions about the dynamics of these large-scale fields, Parker engages readers in a series of "conversations" that are at times anecdotal and even entertaining without ever sacrificing theoretical rigor. The dynamics he describes represents the Maxwell stresses of the magnetic field working against the pressure and inertia of the bulk motion of ionized gases, characterized in terms of the magnetic field and gas velocity. Parker shows how this dynamic interaction cannot be fully expressed in terms of the electric current and electric field.

Conversations on Electric and Magnetic Fields in the Cosmos goes back to basics to explain why classical hydrodynamics and magnetohydrodynamics are inescapable, even in the deepest reaches of space.

The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiar classical, dynamical world through the quantum interference of stationary states. The text stresses the continuity between the quantum world and the classical world, which is merely an approximation to the quantum world. The connections between observables, operators and transformations are clearly explained and the standard commutation rules derived from the properties of spacetime. A chapter is devoted to entanglement, quantum computation, density operators and their role in thermodynamics, and the measurement problem. Scattering phenomena, including the origin of radioactivity, are handled early on in the accessible context of one dimension, and at the end of the book with some rigour in three dimensions. Hydrogen and helium are discussed in some detail and it is shown that quantum mechanics enables us to understand the structure of the periodic table without engaging with the complexities of many-electron atoms. Dirac notation is used from the outset and students are trained to move easily from one representation to another, choosing whichever representation is best suited to a particular problem. The mathematical prerequisites are no more than simple vector algebra, Taylor series expansion and the use of integrating factors to solve linear first order differential equations. Rigorous algebraic methods are preferred to the solution of partial differential equations.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.