A Spare Capacity Planning Methodology for Wide Area Survivable Networks

· Universal-Publishers
Ebook
212
Pages
Eligible

About this ebook

In this dissertation, a new spare capacity planning methodology is proposed utilizing path restoration. The approach is based on forcing working flows/traffic which are on paths that are disjoint to share spare backup capacity. The algorithm for determining the spare capacity assignment is based on genetic algorithms and is capable of incorporating non-linear variables such as non-linear cost function and QoS variables into the objective and constraints. The proposed methodology applies to a wider range of fault scenarios than most of the current literature. It can tolerate link-failures, node-failures, and link-and-node failures. It consists of two stages: the first stage generates a set of network topologies that maximize the sharing between backup paths by forcing them to use a subset of the original network. The second stage utilizes a genetic algorithm to optimize the set of solutions generated by the first stage to achieve an even better final solution. It can optimize the solution based on either minimizing spare capacity or minimizing the total network cost. In addition, it can incorporate QoS variables in both the objective and constraints to design a survivable network that satisfies QoS constraints.

Numerical results comparing the proposed methodology to Integer Programming techniques and heuristics from the literature are presented showing the advantages of the technique. The proposed methodology was applied on 4 different size networks based on spare capacity optimization criteria and it was found that it achieved solutions that were on average 9.3% better than the optimal solution of the IP design that is based on link-restoration. It also achieved solutions that were on average 22.2 % better than the previous heuristic SLPA.

The proposed methodology is very scalable. It was applied on networks with different sizes ranging from a 13-node network to a 70-node network. It was able to solve the 70-node network in less than one hour on a Pentium II PC. The curve-fitting of the empirical execution time of the methodology was found to be O(n3).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.