This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPU-intensive data processing tasks.
What You Will LearnGet an introduction to parallel and distributed computingSee synchronous and asynchronous programmingExplore parallelism in PythonDistributed application with CeleryPython in the CloudPython on an HPC clusterTest and debug distributed applicationsIn DetailCPU-intensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications.
This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.Style and ApproachThis example based, step-by-step guide will show you how to make the best of your hardware configuration using Python for distributing applications.
Francesco Pierfederici is a software engineer who loves Python. He has been working in the fields of astronomy, biology, and numerical weather forecasting for the last 20 years. He has built large distributed systems that make use of tens of thousands of cores at a time and run on some of the fastest supercomputers in the world. He has also written a lot of applications of dubious usefulness but that are great fun. Mostly, he just likes to build things.