A Course in Abstract Algebra, 4th Edition

Vikas Publishing House
4.6
11 reviews
Ebook
789
Pages

About this ebook

Designed for undergraduate and postgraduate students of mathematics the book can also be used by those preparing for various competitive examinations. The text starts with a brief introduction to results from set theory and number theory. It then goes on to cover groups, rings, vector spaces (Linear Algebra) and fields. The topics under Groups include subgroups, permutation groups, finite abelian groups, Sylow theorems, direct products, group actions, solvable and nilpotent groups. The course in Ring theory covers ideals, embedding of rings, euclidean domains, PIDs, UFDs, polynomial rings, irreducibility criteria, Noetherian rings. The section on vector spaces deals with linear transformations, inner product spaces, dual spaces, eigen spaces, diagonalizable operators etc. Under fields, algebraic extensions, splitting fields, normal and separable extensions, algebraically closed fields, Galois extensions and construction by ruler and compass are discussed. The theory has been strongly supported by numerous examples and worked out problems. There is also plenty of scope for the readers to try and solve problems on their own. NEW IN THIS EDITION • Learning Objectives and Summary with each chapter • A large number of additional worked-out problems and examples • Alternate proofs of some theorems and lemmas • Reshuffling/Rewriting of certain portions to make them more reader friendly

Ratings and reviews

4.6
11 reviews
Vishal Kumar
December 20, 2017
Good
1 person found this review helpful
Did you find this helpful?

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.