Introduction to Computational Science: Modeling and Simulation for the Sciences - Second Edition, Edition 2

Princeton University Press
Free sample

Computational science is an exciting new field at the intersection of the sciences, computer science, and mathematics because much scientific investigation now involves computing as well as theory and experiment. This textbook provides students with a versatile and accessible introduction to the subject. It assumes only a background in high school algebra, enables instructors to follow tailored pathways through the material, and is the only textbook of its kind designed specifically for an introductory course in the computational science and engineering curriculum. While the text itself is generic, an accompanying website offers tutorials and files in a variety of software packages.

This fully updated and expanded edition features two new chapters on agent-based simulations and modeling with matrices, ten new project modules, and an additional module on diffusion. Besides increased treatment of high-performance computing and its applications, the book also includes additional quick review questions with answers, exercises, and individual and team projects.

  • The only introductory textbook of its kind—now fully updated and expanded
  • Features two new chapters on agent-based simulations and modeling with matrices
  • Increased coverage of high-performance computing and its applications
  • Includes additional modules, review questions, exercises, and projects
  • An online instructor's manual with exercise answers, selected project solutions, and a test bank and solutions (available only to professors)
  • An online illustration package is available to professors
Read more

About the author

Angela B. Shiflet is the Larry Hearn McCalla Professor of Mathematics and Computer Science and director of computational science at Wofford College. George W. Shiflet is the Larry Hearn McCalla Professor of Biology at Wofford College.
Read more
3 total

Additional Information

Princeton University Press
Read more
Published on
Mar 30, 2014
Read more
Read more
Read more
Read more
Best For
Read more
Read more
Computers / Computer Science
Mathematics / Applied
Mathematics / Study & Teaching
Science / Physics / Mathematical & Computational
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines.

The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science and engineering. It provides a primary and ubiquitous tool in the context making new discoveries, as well as in the development of new theories and techniques for solving key problems arising in scientific and engineering applications.

The contributions, which are the product of two highly successful meetings held jointly in Waterloo, Ontario, Canada on the main campus of Wilfrid Laurier University in June 2015, i.e. the International Conference on Applied Mathematics, Modeling and Computational Science, and the Annual Meeting of the Canadian Applied and Industrial Mathematics (CAIMS), make the book a valuable resource for any reader interested in a broader overview of the methods, ideas and tools involved in mathematical and computational approaches developed for other disciplines, including the natural and social sciences, engineering and technology.

This volume gathers selected contributions from the participants of the Banff International Research Station (BIRS) workshop Coupled Mathematical Models for Physical and Biological Nanoscale Systems and their Applications, who explore various aspects of the analysis, modeling and applications of nanoscale systems, with a particular focus on low dimensional nanostructures and coupled mathematical models for their description.

Due to the vastness, novelty and complexity of the interfaces between mathematical modeling and nanoscience and nanotechnology, many important areas in these disciplines remain largely unexplored. In their efforts to move forward, multidisciplinary research communities have come to a clear understanding that, along with experimental techniques, mathematical modeling and analysis have become crucial to the study, development and application of systems at the nanoscale.

The conference, held at BIRS in autumn 2016, brought together experts from three different communities working in fields where coupled mathematical models for nanoscale and biosystems are especially relevant: mathematicians, physicists (both theorists and experimentalists), and computational scientists, including those dealing with biological nanostructures. Its objectives: summarize the state-of-the-art; identify and prioritize critical problems of major importance that require solutions; analyze existing methodologies; and explore promising approaches to addressing the challenges identified.

The contributions offer up-to-date introductions to a range of topics in nano and biosystems, identify important challenges, assess current methodologies and explore promising approaches. As such, this book will benefit researchers in applied mathematics, as well as physicists and biologists interested in coupled mathematical models and their analysis for physical and biological nanoscale systems that concern applications in biotechnology and medicine, quantum information processing and optoelectronics.

ThisvolumecelebratestheeightiethbirthdayofJosephB. Keller. The authors who contributed to this volume belong to what can be called the “Keller school of applied mathematics. ” They are former students, postdoctoral fellows and visiting scientists who have collaborated with Joe (some of them still do) during his long career. They all look at Joe as their ultimate (role) model. JoeKeller’sdistinguishedcareerhasbeendividedbetweentheCourant Institute of Mathematical Sciences at New York University, where he received all his degrees (his PhD adviser being the great R. Courant himself) and served as a professor for 30 years, and Stanford University, where he has been since 1978. The appended photos highlight some scenes from the old days. Those who know Joe Keller’s work have been always amazed by its diversity and breadth. It is considered a well-known truth that there is not a single important area in applied mathematics or physics which Keller did not contribute to. This can be appreciated, for example, by glancing through his list of publication included in this volume. App- priately, the papers in this book, written with Joe’s inspiration, cover a variety of application areas; together they span the broad subject of mathematical modeling. The models discussed in the book describe the behavior of various systems such as those related to ?nance, waves, - croorganisms, shocks, DNA, ?ames, contact, optics, ?uids, bubbles and jets. Joe’s activity includes many more areas, which unfortunately are not represented here.
Probability, Markov Chains, Queues, and Simulation provides a modern and authoritative treatment of the mathematical processes that underlie performance modeling. The detailed explanations of mathematical derivations and numerous illustrative examples make this textbook readily accessible to graduate and advanced undergraduate students taking courses in which stochastic processes play a fundamental role. The textbook is relevant to a wide variety of fields, including computer science, engineering, operations research, statistics, and mathematics.

The textbook looks at the fundamentals of probability theory, from the basic concepts of set-based probability, through probability distributions, to bounds, limit theorems, and the laws of large numbers. Discrete and continuous-time Markov chains are analyzed from a theoretical and computational point of view. Topics include the Chapman-Kolmogorov equations; irreducibility; the potential, fundamental, and reachability matrices; random walk problems; reversibility; renewal processes; and the numerical computation of stationary and transient distributions. The M/M/1 queue and its extensions to more general birth-death processes are analyzed in detail, as are queues with phase-type arrival and service processes. The M/G/1 and G/M/1 queues are solved using embedded Markov chains; the busy period, residual service time, and priority scheduling are treated. Open and closed queueing networks are analyzed. The final part of the book addresses the mathematical basis of simulation.

Each chapter of the textbook concludes with an extensive set of exercises. An instructor's solution manual, in which all exercises are completely worked out, is also available (to professors only).

Numerous examples illuminate the mathematical theories
Carefully detailed explanations of mathematical derivations guarantee a valuable pedagogical approach
Each chapter concludes with an extensive set of exercises
This book offers a new approach to introductory scientific computing. It aims to make students comfortable using computers to do science, to provide them with the computational tools and knowledge they need throughout their college careers and into their professional careers, and to show how all the pieces can work together. Rubin Landau introduces the requisite mathematics and computer science in the course of realistic problems, from energy use to the building of skyscrapers to projectile motion with drag. He is attentive to how each discipline uses its own language to describe the same concepts and how computations are concrete instances of the abstract.

Landau covers the basics of computation, numerical analysis, and programming from a computational science perspective. The first part of the printed book uses the problem-solving environment Maple as its context, with the same material covered on the accompanying CD as both Maple and Mathematica programs; the second part uses the compiled language Java, with equivalent materials in Fortran90 on the CD; and the final part presents an introduction to LaTeX replete with sample files.

Providing the essentials of computing, with practical examples, A First Course in Scientific Computing adheres to the principle that science and engineering students learn computation best while sitting in front of a computer, book in hand, in trial-and-error mode. Not only is it an invaluable learning text and an essential reference for students of mathematics, engineering, physics, and other sciences, but it is also a consummate model for future textbooks in computational science and engineering courses.

A broad spectrum of computing tools and examples that can be used throughout an academic career
Practical computing aimed at solving realistic problems
Both symbolic and numerical computations
A multidisciplinary approach: science + math + computer science
Maple and Java in the book itself; Mathematica, Fortran90, Maple and Java on the accompanying CD in an interactive workbook format
Now you can clearly present even the most complex computational theory topics to your students with Sipser's distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today's computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser's well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition's refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject's rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E's comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing.
Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.