How to Solve It: A New Aspect of Mathematical Method

Princeton University Press
26
Free sample

A perennial bestseller by eminent mathematician G. Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be "reasoned" out—from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft—indeed, brilliant—instructions on stripping away irrelevancies and going straight to the heart of the problem.
Read more

About the author

George Polya (1887–1985) was one of the most influential mathematicians of the twentieth century. His basic research contributions span complex analysis, mathematical physics, probability theory, geometry, and combinatorics. He was a teacher par excellence who maintained a strong interest in pedagogical matters throughout his long career. Even after his retirement from Stanford University in 1953, he continued to lead an active mathematical life. He taught his final course, on combinatorics, at the age of ninety. John H. Conway is professor emeritus of mathematics at Princeton University. He was awarded the London Mathematical Society's Polya Prize in 1987. Like Polya, he is interested in many branches of mathematics, and in particular, has invented a successor to Polya's notation for crystallographic groups.
Read more

Reviews

4.2
26 total
Loading...

Additional Information

Publisher
Princeton University Press
Read more
Published on
Oct 26, 2014
Read more
Pages
288
Read more
ISBN
9781400828678
Read more
Language
English
Read more
Genres
Mathematics / Geometry / General
Mathematics / Logic
Read more
Content Protection
This content is DRM protected.
Read more
Read Aloud
Available on Android devices
Read more
Eligible for Family Library

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Timothy Gowers
This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more.

Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties.

Features nearly 200 entries, organized thematically and written by an international team of distinguished contributorsPresents major ideas and branches of pure mathematics in a clear, accessible styleDefines and explains important mathematical concepts, methods, theorems, and open problemsIntroduces the language of mathematics and the goals of mathematical researchCovers number theory, algebra, analysis, geometry, logic, probability, and moreTraces the history and development of modern mathematicsProfiles more than ninety-five mathematicians who influenced those working todayExplores the influence of mathematics on other disciplinesIncludes bibliographies, cross-references, and a comprehensive index

Contributors incude:

Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, Doron Zeilberger

G. Polya
Dieses Buch verfolgt verschiedene, eng miteinander verbundene Ziele. In erster Linie mochte es Schtilern, Lehrern und Studierenden der Mathematik dienlich sein als Einfiihrung in einen wichtigen, aber meist vernachlassigten Aspekt der Mathematik. Doch ist das Buch in gewissem Sinn auch eine philosophische Abhandlung. Ebenso ist es eine Fortsetzung friiherer Arbeiten und verlangt selbst eine Fortsetzung. Ich werde auf diese Punkte der Reihe nach zu sprechen kommen. 1. Streng genommen besteht unser ganzes Wissen auBerhalb der Mathematik und der demonstrativen Logik (die ja in der Tat ein Zweig der Mathematik ist) aus Vermutungen. Es gibt natiirlich Ver mutungen und Vermutungen. Es gibt hochst respektable und zu verlassige Vermutungen wie die in gewissen allgemeinen Gesetzen der N aturwissenschaften niedergelegten. Es gibt andere Vermutungen, die weder respektabel noch zuverlassig sind, und die einen zuweilen argern konnen, wenn man sie in der Zeitung Hest. Und zwischen diesen beiden Extremen stehen aIle moglichen Arlen und Schattierungen von Ver muten, instinktivem Vorausfiihlen und Erraten. Wir sichern die Gtiltigkeit unseres mathematischen Wissens durch demonstratives SchliefJen, aber wir stiitzen unsere Vermutungen durch plausibles SchliefJen. Ein mathematischer Beweis besteht aus demon strativem SchlieBen, aber der Induktionsbeweis des Physikers, der Indizienbeweis des Juristen, der dokumentarische Beweis des Ristori kers, der statistische Beweis des Nationalokonomen gehoren zum plausiblen SchlieBen. Der Unterschied zwischen den beiden SchluBweisen ist groB und mannigfaltig. Demonstratives SchlieBen ist sicher, unbestreitbar und endgiiltig. Plausibles SchlieBen ist gewagt, strittig und provisorisch.
G. Polya
Zwar nur gelesenoder gehort abermit echtemInteresse und wirkIicher Einsicht verfolgt hat, kann zu einem Schema werden, zu einem Vor bild, das sich bei der Losung ahnlicher Aufgaben mit Vorteil nacho ahmen laBt. Teil 1 setzt sioh zum Ziel, den Leser mit einigen der artigen besonders niitzlichen Schemata bekanntzumachen. Es mag leicht sein, die LOsungeiner Aufgabe nachzuahmen, wenn man eineihr sehr ahnliche zu losenhat; eine solcheNachahmung wird sehwieriger oder kaum moglich sein, wenn keine sostarke AhnIichkeit vorliegt. Auch ist ein Verlangen nach etwas, was mehr ist als bloBe Nachahmung, tief verwurzelt in der menschlichen Natur: ein Ver langen nach einem Verfahren, das, von Einschrankungen frei, aile Probleme, aile Aufgaben im weitesten Sinn losen kann. Dieses Ver langen mag bei vielen Menschen dunkel bleiben, aber es tritt in ein paarMarchen - der Lesererinnertsiohvieileicht an die Geschichte von dem Zauberwort, das aile Tiiren offnet - und in den Schriften einiger Philosophen zutage. Descartes hat sioh intensiv mit der Idee einer universellen Methode zur Losung ailer Probleme befaBt, und Leibnitz hat die Idee einer vollkommenen Methode sehr klar formuliert. Aber die Suche nach einer universeilen vollkommenen Methode ist ebenso erfolglos geblieben wie die Suche nach dem Stein der Weisen, der niedrige Metaile in Gold verwandeln soilte; es gibt groBeTraume, die Traume bleiben mtissen. Dennoch iiben solche unerreichbaren Ideale ihren EinfluB aus: Es hat noch niemand den Polarstem erreicht, aber vielehaben siohnach ihm gerichtetund soden richtigenWeggefunden.
G. Polya
Dieses Buch verfolgt verschiedene, eng miteinander verbundene Ziele. In erster Linie mochte es Schiilern, Lehrern und Studierenden der Mathematik dienlich sein als Einfiihrnngin einen wichtigen, aher meist vernachlassigten Aspekt der Mathematik. Doch ist das Buch in gewissem Sinn auch eine philosophische Abhandlung. Ebenso ist es eine Fortsetzung friiherer Arbeiten und verlangt selbst eine Fortsetzung. Ich werde auf diese Punkte der Reihe nach zu sprechen kommen. 1. Streng genommen besteht unser ganzes Wissen auIlerhalb der Mathematik und der demonstrativen Logik (die ja in der Tat ein Zweig der Mathematik ist) aus Vermutungen. Es gibt natiirlich Ver mutungen und Vermutungen. Es gibt hOchst respektable und zu verlassige Vermutungen wie die in gewissen allgemeinen Gesetzen der Naturwissenschaften niedergelegten. Es giht andere Vermutungen, die weder respektabel noch zuverlassig sind, und die einen zuweilen argern konnen, wenn man sie in der Zeitung Hest. Und zwischen diesen beiden Extremen stehen alle moglichen Arten und Schattierungen von Ver muten, instinktivem Vorausfiihlen und Erraten. Wir sichern die Giiltigkeit unseres mathematischen Wissens durch demonstratives SchliefJen, aber wir stiitzen unsere Vermutungen durch plausibles SchliefJen. Ein mathematischer Beweis besteht aus demon strativem SchlieIlen, aber der Induktionsbeweis des Physikers, der Indizienbeweis des Juristen, der dokumentarische Beweis des Ristori kers, der statistische Beweis des Nationalokonomen gehoren zum plausiblen SchlieIlen. Der Unterschied zwischen den heiden SchluIlweisen ist groIl und mannigfaltig. Demonstratives SchlieBen ist sicher, unbestreitbar und endgiiltig. Plausibles Schlie!3en ist gewagt, strittig und provisorisch.
©2017 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.