人工ç¥èœã¯æäŸãããåçãåæããããã«èã®åé¡ã«é¢ããæ
å ±ãèŠã€ããã®ã«åœ¹ç«ã¡ãŸãããã®ã¢ã«ãŽãªãºã ã¯ãç®èçŸæ£ïŒäŸïŒããŒã垯ç¶ç±ç¹ïŒãç®èããïŒäŸïŒã¡ã©ããŒãïŒããã®ä»ã®ç®èçºç¹ïŒäŸïŒè麻ç¹ïŒã«é¢ããé¢é£ããå»çæ
å ±ãæäŸããŸãããã€ãã®æ¶è²»è
çµç¹ã§ãã2022幎ã®Stiftung Warentestã§ã¯ããã®ã¢ããªã¯ææã®é éå»çç®èç§ãµãŒãã¹ã«æ¯ã¹ãŠãããã«äœãæºè¶³åºŠè©äŸ¡ãåããŸããã
â èåçãæ®ã£ãŠæåºãããããªãã³ã°ãããç»åã¯è»¢éãããŸãããããŒã¿ã¯ä¿åãããŸããã
â AI ã¯ãç®èçŸæ£ããã³ç®èãã (ã¡ã©ããŒããªã©) ã®é¢é£ãã城åããã³çç¶ã説æãã Web ãµã€ããžã®ãªã³ã¯ãæäŸããŸãã
â ãã®ã¢ã«ãŽãªãºã ã¯ãäžè¬çãªçš®é¡ã®ç®èçŸæ£ (ã¢ãããŒæ§ç®èçãè麻ç¹ã湿ç¹ã也ç¬ãã«ãã³ãé
ããçªç²çèçãã¡ã©ããŒããæ¯æãªã©) ãå«ã 186 ã®ç®èçŸæ£ã®ç»åãåé¡ã§ããŸãã
â ã¢ã«ãŽãªãºã ã®äœ¿çšã¯ç¡æã§ãåèš 104 ã®èšèªããµããŒããããŠããŸãã
ð¹åºç
ãModel Dermatologyãã¢ã«ãŽãªãºã ãæ¡çšããŠããŸããåé¡åšã®æ§èœã¯ãããã€ãã®æš©åšããå»åŠéèªã«æ²èŒãããŠããŸããããŸããŸãªç
é¢ãšåœéçã«ååç ç©¶ãè¡ãããŠããããã®äžã«ã¯Seoul National UniversityãUlsan UniversityãYonsei UniversityãHallym UniversityãInje UniversityãStanfordãMSKCCãããã³Ospedale San Bortoloãå«ãŸããŸãã
- Assessment of Deep Neural Networks for the Diagnosis of Benign and Malignant Skin Neoplasms in Comparison with Dermatologists: A Retrospective Validation Study. PLOS Medicine, 2020
- Performance of a deep neural network in teledermatology: a single center prospective diagnostic study. J Eur Acad Dermatol Venereol. 2020
- Keratinocytic Skin Cancer Detection on the Face using Region-based Convolutional Neural Network. JAMA Dermatol. 2019
- Seems to be low, but is it really poor? : Need for Cohort and Comparative studies to Clarify Performance of Deep Neural Networks. J Invest Dermatol. 2020
- Multiclass Artificial Intelligence in Dermatology: Progress but Still Room for Improvement. J Invest Dermatol. 2020
- Augment Intelligence Dermatology : Deep Neural Networks Empower Medical Professionals in Diagnosing Skin Cancer and Predicting Treatment Options for 134 Skin Disorders. J Invest Dermatol. 2020
- Interpretation of the Outputs of Deep Learning Model trained with Skin Cancer Dataset. J Invest Dermatol. 2018
- Automated Dermatological Diagnosis: Hype or Reality? J Invest Dermatol. 2018
- Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018
- Augmenting the Accuracy of Trainee Doctors in Diagnosing Skin Lesions Suspected of Skin Neoplasms in a Real-World Setting: A Prospective Controlled Before and After Study. PLOS One, 2022
- Evaluation of Artificial Intelligence-assisted Diagnosis of Skin Neoplasms â a single-center, paralleled, unmasked, randomized controlled trial. J Invest Dermatol. 2022
ð¹å
責äºé
- ãã®ã¢ããªã䜿çšããããšã«å ããŠãå»åŠçãªæ±ºå®ãäžãåã«ãå»åž«ã®ã¢ããã€ã¹ãæ±ããŠãã ããã
- èšåºç»åã®ã¿ã«åºã¥ãç®èãããŸãã¯ç®èçŸæ£ã®èšºæã¯ãæå€§ 10% ã®çäŸãèŠéãå¯èœæ§ããããŸãããããã£ãŠããã®ã¢ããªã¯æšæºæ²»çïŒå¯Ÿé¢æ€æ»ïŒã®ä»£ããã«ã¯ãªããŸããã
- ã¢ã«ãŽãªãºã ã®äºæž¬ã¯ãç®èãããŸãã¯ç®èéå®³ã®æçµçãªèšºæã§ã¯ãããŸãããåç
§çšã«åå¥åãããå»çæ
å ±ãæäŸããããšã®ã¿ãç®çãšããŠããŸã
æçµæŽæ°æ¥
2025/09/03