初探機器學習演算法(電子書)

· 碁峰資訊股份有限公司
eBook
336
Páginas

Información sobre este eBook

 熱門資料科學與機器學習演算法學習指南


本書介紹並說明資料科學領域常見且重要的機器學習演算法,這些演算法可用於監督式與非監督學習、強化學習與半監督式學習。書中所討論的演算法包括線性迴歸、logistic迴歸、SVM、樸素貝氏、k-means、隨機森林、TensorFlow與特徵工程。


你將會學到如何使用這些演算法來解決問題,以及它們的工作原理。同時也會介紹自然語言處理與推薦系統,以協助同時執行多種演算法。


最後將會知道如何挑選正確的機器學習演算法,來為你的問題進行分群、分類或迴歸。


你將學會:

• 熟悉機器學習的重要元素

• 瞭解特徵選擇與特徵工程流程

• 平衡線性迴歸的效能與誤差

• 建立資料模型,與使用各種類型的演算法來瞭解它的工作方式

• 微調SVM的參數

• 實作資料集的群聚

• 探索自然語言處理與推薦系統的概念

• 從零開始建立機器學習架構

#碁峰資訊 GOTOP Information Inc.

Valorar este eBook

Danos tu opinión.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.