Quantum Machine Learning and Optimisation in Finance: On the Road to Quantum Advantage

· · ·
· Packt Publishing Ltd
Ebook
442
Pages

About this ebook

Learn the principles of quantum machine learning and how to apply them

While focus is on financial use cases, all the methods and techniques are transferable to other fields

Purchase of Print or Kindle includes a free eBook in PDF

Key Features
  • Discover how to solve optimisation problems on quantum computers that can provide a speedup edge over classical methods
  • Use methods of analogue and digital quantum computing to build powerful generative models
  • Create the latest algorithms that work on Noisy Intermediate-Scale Quantum (NISQ) computers
Book Description

With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware.

Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware.

This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm.

This book will help you be one of the first in the finance industry to use quantum machine learning models to solve classically hard real-world problems. We may have moved past the point of quantum computing supremacy, but our quest for establishing quantum computing advantage has just begun!

What you will learn
  • Train parameterised quantum circuits as generative models that excel on NISQ hardware
  • Solve hard optimisation problems
  • Apply quantum boosting to financial applications
  • Learn how the variational quantum eigensolver and the quantum approximate optimisation algorithms work
  • Analyse the latest algorithms from quantum kernels to quantum semidefinite programming
  • Apply quantum neural networks to credit approvals
Who this book is for

This book is for Quants and developers, data scientists, researchers, and students in quantitative finance. Although the focus is on financial use cases, all the methods and techniques are transferable to other areas.

About the author

Antoine Jacquier obtained his PhD in 2010 in Mathematics from Imperial College London, where his research was focused on large deviations and asymptotic methods for stochastic volatility. Over the past 10 years, he has been working on stochastic analysis and volatility modelling, publishing about 50 papers and co-writing several books. He is also the Head of the MSc in Mathematics and Finance at Imperial College and regularly works as a quantitative consultant for the Finance industry.

Oleksiy Kondratyev obtained his PhD in Mathematical Physics from the Institute for Mathematics, National Academy of Sciences of Ukraine, where his research was focused on studying phase transitions in quantum lattice systems. Oleksiy has over 20 years of quantitative finance experience, primarily in banking. He was recognised as Quant of the Year 2019 by Risk magazine and joined Abu Dhabi Investment Authority as a Quantitative Research & Development Lead in the summer of 2021.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.