Applications of Computational Intelligence in Data-Driven Trading

· Distribuido por John Wiley & Sons
Libro electrónico
304
Páginas

Acerca de este libro electrónico

“Life on earth is filled with many mysteries, but perhaps the most challenging of these is the nature of Intelligence.”

– Prof. Terrence J. Sejnowski, Computational Neurobiologist

The main objective of this book is to create awareness about both the promises and the formidable challenges that the era of Data-Driven Decision-Making and Machine Learning are confronted with, and especially about how these new developments may influence the future of the financial industry.

The subject of Financial Machine Learning has attracted a lot of interest recently, specifically because it represents one of the most challenging problem spaces for the applicability of Machine Learning. The author has used a novel approach to introduce the reader to this topic:

  • The first half of the book is a readable and coherent introduction to two modern topics that are not generally considered together: the data-driven paradigm and Computational Intelligence.
  • The second half of the book illustrates a set of Case Studies that are contemporarily relevant to quantitative trading practitioners who are dealing with problems such as trade execution optimization, price dynamics forecast, portfolio management, market making, derivatives valuation, risk, and compliance.

The main purpose of this book is pedagogical in nature, and it is specifically aimed at defining an adequate level of engineering and scientific clarity when it comes to the usage of the term “Artificial Intelligence,” especially as it relates to the financial industry.

The message conveyed by this book is one of confidence in the possibilities offered by this new era of Data-Intensive Computation. This message is not grounded on the current hype surrounding the latest technologies, but on a deep analysis of their effectiveness and also on the author’s two decades of professional experience as a technologist, quant and academic.

Acerca del autor

CRIS DOLOC is a leading computational scientist with more than 25 years of experience in quantitative finance. He holds a PhD in Computational Physics and is currently teaching at the University of Chicago in the Financial Mathematics program. Cris is also the founder of FintelligeX, a technology platform designed to promote data-driven education, and he is very passionate about the opportunities that recent developments in Cognitive Computing and Computational Intelligence could bring to the field of Quant education.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.