Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics

by Mocktime Publication
Libro electrónico
61
Páginas

Acerca de este libro electrónico

Artificial Intelligence and Machine Learning - A Precise Book to Learn Basics

Table of Contents

1. Introduction to Artificial Intelligence and Machine Learning 1.1 What is Artificial Intelligence? 1.2 The Evolution of Artificial Intelligence 1.3 What is Machine Learning? 1.4 How Machine Learning Differs from Traditional Programming 1.5 The Importance of Artificial Intelligence and Machine Learning

2. Foundations of Machine Learning 2.1 Supervised Learning 2.1.1 Linear Regression 2.1.2 Logistic Regression 2.1.3 Decision Trees 2.2 Unsupervised Learning 2.2.1 Clustering 2.2.2 Dimensionality Reduction 2.3 Reinforcement Learning 2.3.1 Markov Decision Process 2.3.2 Q-Learning

3. Neural Networks and Deep Learning 3.1 Introduction to Neural Networks 3.2 Artificial Neural Networks 3.2.1 The Perceptron 3.2.2 Multi-Layer Perceptron 3.3 Convolutional Neural Networks 3.4 Recurrent Neural Networks 3.5 Generative Adversarial Networks

4. Natural Language Processing 4.1 Introduction to Natural Language Processing 4.2 Preprocessing and Text Representation 4.3 Sentiment Analysis 4.4 Named Entity Recognition 4.5 Text Summarization

5. Computer Vision 5.1 Introduction to Computer Vision 5.2 Image Processing 5.3 Object Detection 5.4 Image Segmentation 5.5 Face Recognition

6. Reinforcement Learning Applications 6.1 Reinforcement Learning in Robotics 6.2 Reinforcement Learning in Games 6.3 Reinforcement Learning in Finance 6.4 Reinforcement Learning in Healthcare

7. Ethics and Social Implications of Artificial Intelligence 7.1 Bias in Artificial Intelligence 7.2 The Future of Work 7.3 Privacy and Security 7.4 The Impact of AI on Society

8. Machine Learning Infrastructure 8.1 Cloud Infrastructure for Machine Learning 8.2 Distributed Machine Learning 8.3 DevOps for Machine Learning

9. Machine Learning Tools 9.1 Introduction to Machine Learning Tools 9.2 Python Libraries for Machine Learning 9.3 TensorFlow 9.4 Keras 9.5 PyTorch

10. Building and Deploying Machine Learning Models 10.1 Building a Machine Learning Model 10.2 Hyperparameter Tuning 10.3 Model Evaluation 10.4 Deployment Considerations

11. Time Series Analysis and Forecasting 11.1 Introduction to Time Series Analysis 11.2 ARIMA 11.3 Exponential Smoothing 11.4 Deep Learning for Time Series

12. Bayesian Machine Learning 12.1 Introduction to Bayesian Machine Learning 12.2 Bayesian Regression 12.3 Bayesian Classification 12.4 Bayesian Model Averaging

13. Anomaly Detection 13.1 Introduction to Anomaly Detection 13.2 Unsupervised Anomaly Detection 13.3 Supervised Anomaly Detection 13.4 Deep Learning for Anomaly Detection

14. Machine Learning in Healthcare 14.1 Introduction to Machine Learning in Healthcare 14.2 Electronic Health Records 14.3 Medical Image Analysis 14.4 Personalized Medicine

15. Recommender Systems 15.1 Introduction to Recommender Systems 15.2 Collaborative Filtering 15.3 Content-Based Filtering 15.4 Hybrid Recommender Systems

16. Transfer Learning 16.1 Introduction to Transfer Learning 16.2 Fine-Tuning 16.3 Domain Adaptation 16.4 Multi-Task Learning

17. Deep Reinforcement Learning 17.1 Introduction to Deep Reinforcement Learning 17.2 Deep Q-Networks 17.3 Actor-Critic Methods 17.4 Deep Reinforcement Learning Applications

18. Adversarial Machine Learning 18.1 Introduction to Adversarial Machine Learning 18.2 Adversarial Attacks 18.3 Adversarial Defenses 18.4 Adversarial Machine Learning Applications

19. Quantum Machine Learning 19.1 Introduction to Quantum Computing 19.2 Quantum Machine Learning 19.3 Quantum Computing Hardware 19.4 Quantum Machine Learning Applications

20. Machine Learning in Cybersecurity 20.1 Introduction to Machine Learning in Cybersecurity 20.2 Intrusion Detection 20.3 Malware Detection 20.4 Network Traffic Analysis

21. Future Directions in Artificial Intelligence and Machine Learning 21.1 Reinforcement Learning in Real-World Applications 21.2 Explainable Artificial Intelligence 21.3 Quantum Machine Learning 21.4 Autonomous Systems

22. Conclusion 22.1 Summary 22.2 Key Takeaways 22.3 Future Directions 22.4 Call to Action


Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.