Building Modern Data Applications Using Databricks Lakehouse: Develop, optimize, and monitor data pipelines on Databricks

· Packt Publishing Ltd
eBook
246
페이지

eBook 정보

Get up to speed with the Databricks Data Intelligence Platform to build and scale modern data applications, leveraging the latest advancements in data engineeringKey Features
  • Learn how to work with real-time data using Delta Live Tables
  • Unlock insights into the performance of data pipelines using Delta Live Tables
  • Apply your knowledge to Unity Catalog for robust data security and governance
  • Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionWith so many tools to choose from in today’s data engineering development stack as well as operational complexity, this often overwhelms data engineers, causing them to spend less time gleaning value from their data and more time maintaining complex data pipelines. Guided by a lead specialist solutions architect at Databricks with 10+ years of experience in data and AI, this book shows you how the Delta Live Tables framework simplifies data pipeline development by allowing you to focus on defining input data sources, transformation logic, and output table destinations. This book gives you an overview of the Delta Lake format, the Databricks Data Intelligence Platform, and the Delta Live Tables framework. It teaches you how to apply data transformations by implementing the Databricks medallion architecture and continuously monitor the data quality of your pipelines. You’ll learn how to handle incoming data using the Databricks Auto Loader feature and automate real-time data processing using Databricks workflows. You’ll master how to recover from runtime errors automatically. By the end of this book, you’ll be able to build a real-time data pipeline from scratch using Delta Live Tables, leverage CI/CD tools to deploy data pipeline changes automatically across deployment environments, and monitor, control, and optimize cloud costs.What you will learn
  • Deploy near-real-time data pipelines in Databricks using Delta Live Tables
  • Orchestrate data pipelines using Databricks workflows
  • Implement data validation policies and monitor/quarantine bad data
  • Apply slowly changing dimensions (SCD), Type 1 and 2, data to lakehouse tables
  • Secure data access across different groups and users using Unity Catalog
  • Automate continuous data pipeline deployment by integrating Git with build tools such as Terraform and Databricks Asset Bundles
Who this book is for

This book is for data engineers looking to streamline data ingestion, transformation, and orchestration tasks. Data analysts responsible for managing and processing lakehouse data for analysis, reporting, and visualization will also find this book beneficial. Additionally, DataOps/DevOps engineers will find this book helpful for automating the testing and deployment of data pipelines, optimizing table tasks, and tracking data lineage within the lakehouse. Beginner-level knowledge of Apache Spark and Python is needed to make the most out of this book.

저자 정보

Will Girten is a lead specialist solutions architect who joined Databricks in early 2019. With over a decade of experience in data and AI, Will has worked in various business verticals, from healthcare to government and financial services. Will's primary focus has been helping enterprises implement data warehousing strategies for the lakehouse and performance-tuning BI dashboards, reports, and queries. Will is a certified Databricks Data Engineering Professional and Databricks Machine Learning Professional. He holds a Bachelor of Science in computer engineering from the University of Delaware.

이 eBook 평가

의견을 알려주세요.

읽기 정보

스마트폰 및 태블릿
AndroidiPad/iPhoneGoogle Play 북 앱을 설치하세요. 계정과 자동으로 동기화되어 어디서나 온라인 또는 오프라인으로 책을 읽을 수 있습니다.
노트북 및 컴퓨터
컴퓨터의 웹브라우저를 사용하여 Google Play에서 구매한 오디오북을 들을 수 있습니다.
eReader 및 기타 기기
Kobo eReader 등의 eBook 리더기에서 읽으려면 파일을 다운로드하여 기기로 전송해야 합니다. 지원되는 eBook 리더기로 파일을 전송하려면 고객센터에서 자세한 안내를 따르세요.