Differential Geometry: Bundles, Connections, Metrics and Curvature

· Oxford Graduate Texts in Mathematics Book 23 · OUP Oxford
Ebook
304
Pages
Eligible

About this ebook

Bundles, connections, metrics and curvature are the 'lingua franca' of modern differential geometry and theoretical physics. This book will supply a graduate student in mathematics or theoretical physics with the fundamentals of these objects. Many of the tools used in differential topology are introduced and the basic results about differentiable manifolds, smooth maps, differential forms, vector fields, Lie groups, and Grassmanians are all presented here. Other material covered includes the basic theorems about geodesics and Jacobi fields, the classification theorem for flat connections, the definition of characteristic classes, and also an introduction to complex and Kähler geometry. Differential Geometry uses many of the classical examples from, and applications of, the subjects it covers, in particular those where closed form expressions are available, to bring abstract ideas to life. Helpfully, proofs are offered for almost all assertions throughout. All of the introductory material is presented in full and this is the only such source with the classical examples presented in detail.

About the author

Clifford Henry Taubes is the William Petschek Professor of Mathematics at Harvard University. He is a member of the National Academy of Sciences and also the American Academy of Sciences. He was awarded the American Mathematical Society's Oswald Veblen Prize in 1991 for his work in differential geometry and topology. He was also the recipient of the French Academy of Sciences Elie Cartan Prize in 1993, the Clay Research Award in 2008, the National Academy of Sciences' Mathematics Award in 2008, and the Shaw Prize in Mathematics in 2009.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.