Complex Variables and the Laplace Transform for Engineers

· Courier Corporation
3.0
1 条评价
电子书
512

关于此电子书

"An excellent text; the best I have found on the subject." — J. B. Sevart, Department of Mechanical Engineering, University of Wichita
"An extremely useful textbook for both formal classes and for self-study." — Society for Industrial and Applied Mathematics
Engineers often do not have time to take a course in complex variable theory as undergraduates, yet is is one of the most important and useful branches of mathematics, with many applications in engineering. This text is designed to remedy that need by supplying graduate engineering students (especially electrical engineering) with a course in the basic theory of complex variables, which in turn is essential to the understanding of transform theory. Presupposing a good knowledge of calculus, the book deals lucidly and rigorously with important mathematical concepts, striking an ideal balance between purely mathematical treatments that are too general for the engineer, and books of applied engineering which may fail to stress significant mathematical ideas.
The text is divided into two basic parts: The first part (Chapters 1–7) is devoted to the theory of complex variables and begins with an outline of the structure of system analysis and an explanation of basic mathematical and engineering terms. Chapter 2 treats the foundation of the theory of a complex variable, centered around the Cauchy-Riemann equations. The next three chapters — conformal mapping, complex integration, and infinite series — lead up to a particularly important chapter on multivalued functions, explaining the concepts of stability, branch points, and riemann surfaces. Numerous diagrams illustrate the physical applications of the mathematical concepts involved.
The second part (Chapters 8–16) covers Fourier and Laplace transform theory and some of its applications in engineering, beginning with a chapter on real integrals. Three important chapters follow on the Fourier integral, the Laplace integral (one-sided and two-sided) and convolution integrals. After a chapter on additional properties of the Laplace integral, the book ends with four chapters (13–16) on the application of transform theory to the solution of ordinary linear integrodifferential equations with constant coefficients, impulse functions, periodic functions, and the increasingly important Z transform.
Dr. LePage's book is unique in its coverage of an unusually broad range of topics difficult to find in a single volume, while at the same time stressing fundamental concepts, careful attention to details and correct use of terminology. An extensive selection of interesting and valuable problems follows each chapter, and an excellent bibliography recommends further reading. Ideal for home study or as the nucleus of a graduate course, this useful, practical, and popular (8 printings in its hardcover edition) text offers students, engineers, and researchers a careful, thorough grounding in the math essential to many areas of engineering. "An outstanding job." — American Mathematical Monthly

评分和评价

3.0
1 条评价

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。