Switching in Systems and Control

Springer Science & Business Media
Free sample

l\lany systems encountered in practice involve a coupling between contin uous dynamics and discrete events. Systems in which these two kinds of dynamics coexist and interact are usually called hybrid. For example, the following phenomena give rise to hybrid behavior: a valve or a power switch opening and closing; a thermostat turning the heat on and off; biological cells growing and dividing; a server switching between buffers in a queueing network; aircraft entering, crossing, and leaving an air traffic control region; dynamics of a car changing abruptly due to wheels locking and unlocking on ice. Hybrid systems constitute a relatively new and very active area of current research. They present interesting theoretical challenges and are important in many real-world problems. Due to its inherently interdisci plinary nature, the field has attracted the attention of people with diverse backgrounds, primarily computer scientists, applied mathematicians, and engineers. Researchers with a background and interest in continuous-time systems and control theory are concerned primarily with properties of the contin uous dynamics, such as Lyapunov stability. A detailed investigation of the discrete behavior, on the other hand, is usually not a goal in itself. In fact, rather than dealing with specifics of the discrete dynamics, it is often use ful to describe and analyze a more general category of systems which is known to contain a particular model of interest.
Read more
Collapse
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Collapse
Published on
Dec 6, 2012
Read more
Collapse
Pages
233
Read more
Collapse
ISBN
9781461200178
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Language Arts & Disciplines / Library & Information Science / General
Mathematics / Differential Equations / General
Mathematics / General
Science / System Theory
Technology & Engineering / Automation
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
The second edition of this textbook provides a single source for the analysis of system models represented by continuous-time and discrete-time, finite-dimensional and infinite-dimensional, and continuous and discontinuous dynamical systems. For these system models, it presents results which comprise the classical Lyapunov stability theory involving monotonic Lyapunov functions, as well as corresponding contemporary stability results involving non-monotonic Lyapunov functions. Specific examples from several diverse areas are given to demonstrate the applicability of the developed theory to many important classes of systems, including digital control systems, nonlinear regulator systems, pulse-width-modulated feedback control systems, and artificial neural networks.

The authors cover the following four general topics:

- Representation and modeling of dynamical systems of the types described above

- Presentation of Lyapunov and Lagrange stability theory for dynamical systems defined on general metric spaces involving monotonic and non-monotonic Lyapunov functions

- Specialization of this stability theory to finite-dimensional dynamical systems

- Specialization of this stability theory to infinite-dimensional dynamical systems

Replete with examples and requiring only a basic knowledge of linear algebra, analysis, and differential equations, this book can be used as a textbook for graduate courses in stability theory of dynamical systems. It may also serve as a self-study reference for graduate students, researchers, and practitioners in applied mathematics, engineering, computer science, economics, and the physical and life sciences.

Review of the First Edition:

“The authors have done an excellent job maintaining the rigor of the presentation, and in providing standalone statements for diverse types of systems. [This] is a very interesting book which complements the existing literature. [It] is clearly written, and difficult concepts are illustrated by means of good examples.”

- Alessandro Astolfi, IEEE Control Systems Magazine, February 2009

Hybrid dynamical systems, both continuous and discrete dynamics and variables, have attracted considerable interest recently. This emerging area is found at the interface of control theory and computer engineering, focusing on the analogue and digital aspects of systems and devices. They are essential for advances in modern digital- controller technology. "Qualitative Theory of Hybrid Dynamical Systems" provides a thorough development and systematic presentation of the foundations and framework for hybrid dynamical systems. The presentation offers an accessible, but precise, development of the mathematical models, conditions for existence of limit cycles, and criteria of their stability. The book largely concentrates on the case of discretely controlled continuous-time systems and their relevance for modeling aspects of flexible manufacturing systems and dynamically routed queuing networks. Features and topics: *differential automata*development and use of the concept "cyclic linear differential automata" (CLDA)*switched single-server flow networks coverage*application to specific models of manufacturing systems and queuing networks*select collection of open problems for the subject*self-contained presentation of topics, with the necessary background This new book is an excellent resource for the study and analysis of hybrid dynamical systems used in systems and control engineering. Researchers, postgraduates and professionals in control engineering and computer engineering will find the book an up-to-date development of the relevant new concepts and tools.
In the years following her role as the lead author of the international bestseller, Limits to Growth—the first book to show the consequences of unchecked growth on a finite planet— Donella Meadows remained a pioneer of environmental and social analysis until her untimely death in 2001.

Thinking in Systems, is a concise and crucial book offering insight for problem solving on scales ranging from the personal to the global. Edited by the Sustainability Institute’s Diana Wright, this essential primer brings systems thinking out of the realm of computers and equations and into the tangible world, showing readers how to develop the systems-thinking skills that thought leaders across the globe consider critical for 21st-century life.

Some of the biggest problems facing the world—war, hunger, poverty, and environmental degradation—are essentially system failures. They cannot be solved by fixing one piece in isolation from the others, because even seemingly minor details have enormous power to undermine the best efforts of too-narrow thinking.

While readers will learn the conceptual tools and methods of systems thinking, the heart of the book is grander than methodology. Donella Meadows was known as much for nurturing positive outcomes as she was for delving into the science behind global dilemmas. She reminds readers to pay attention to what is important, not just what is quantifiable, to stay humble, and to stay a learner.

In a world growing ever more complicated, crowded, and interdependent, Thinking in Systems helps readers avoid confusion and helplessness, the first step toward finding proactive and effective solutions.

©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.