Data Labeling in Machine Learning with Python: Explore modern ways to prepare labeled data for training and fine-tuning ML and generative AI models

· Packt Publishing Ltd
Ebook
398
Pages

About this ebook

Take your data preparation, machine learning, and GenAI skills to the next level by learning a range of Python algorithms and tools for data labelingKey Features
  • Generate labels for regression in scenarios with limited training data
  • Apply generative AI and large language models (LLMs) to explore and label text data
  • Leverage Python libraries for image, video, and audio data analysis and data labeling
  • Purchase of the print or Kindle book includes a free PDF eBook
Book DescriptionData labeling is the invisible hand that guides the power of artificial intelligence and machine learning. In today’s data-driven world, mastering data labeling is not just an advantage, it’s a necessity. Data Labeling in Machine Learning with Python empowers you to unearth value from raw data, create intelligent systems, and influence the course of technological evolution. With this book, you'll discover the art of employing summary statistics, weak supervision, programmatic rules, and heuristics to assign labels to unlabeled training data programmatically. As you progress, you'll be able to enhance your datasets by mastering the intricacies of semi-supervised learning and data augmentation. Venturing further into the data landscape, you'll immerse yourself in the annotation of image, video, and audio data, harnessing the power of Python libraries such as seaborn, matplotlib, cv2, librosa, openai, and langchain. With hands-on guidance and practical examples, you'll gain proficiency in annotating diverse data types effectively. By the end of this book, you’ll have the practical expertise to programmatically label diverse data types and enhance datasets, unlocking the full potential of your data.What you will learn
  • Excel in exploratory data analysis (EDA) for tabular, text, audio, video, and image data
  • Understand how to use Python libraries to apply rules to label raw data
  • Discover data augmentation techniques for adding classification labels
  • Leverage K-means clustering to classify unsupervised data
  • Explore how hybrid supervised learning is applied to add labels for classification
  • Master text data classification with generative AI
  • Detect objects and classify images with OpenCV and YOLO
  • Uncover a range of techniques and resources for data annotation
Who this book is for

This book is for machine learning engineers, data scientists, and data engineers who want to learn data labeling methods and algorithms for model training. Data enthusiasts and Python developers will be able to use this book to learn data exploration and annotation using Python libraries. Basic Python knowledge is beneficial but not necessary to get started.

Discover more

About the author

Vijaya Kumar Suda is a seasoned data and AI professional boasting over two decades of expertise collaborating with global clients. Having resided and worked in diverse locations such as Switzerland, Belgium, Mexico, Bahrain, India, Canada, and the USA, Vijaya has successfully assisted customers spanning various industries. Currently serving as a senior data and AI consultant at Microsoft, he is instrumental in guiding industry partners through their digital transformation endeavors using cutting-edge cloud technologies and AI capabilities. His proficiency encompasses architecture, data engineering, machine learning, generative AI, and cloud solutions.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.