Data Pipelines with Apache Airflow

·
· Distribuido por Simon and Schuster
3.3
3 opiniones
Libro electrónico
480
Páginas
Apto

Acerca de este libro electrónico

"An Airflow bible. Useful for all kinds of users, from novice to expert." - Rambabu Posa, Sai Aashika Consultancy

Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines.

A successful pipeline moves data efficiently, minimizing pauses and blockages between tasks, keeping every process along the way operational. Apache Airflow provides a single customizable environment for building and managing data pipelines, eliminating the need for a hodgepodge collection of tools, snowflake code, and homegrown processes. Using real-world scenarios and examples, Data Pipelines with Apache Airflow teaches you how to simplify and automate data pipelines, reduce operational overhead, and smoothly integrate all the technologies in your stack.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Data pipelines manage the flow of data from initial collection through consolidation, cleaning, analysis, visualization, and more. Apache Airflow provides a single platform you can use to design, implement, monitor, and maintain your pipelines. Its easy-to-use UI, plug-and-play options, and flexible Python scripting make Airflow perfect for any data management task.

About the book
Data Pipelines with Apache Airflow teaches you how to build and maintain effective data pipelines. You’ll explore the most common usage patterns, including aggregating multiple data sources, connecting to and from data lakes, and cloud deployment. Part reference and part tutorial, this practical guide covers every aspect of the directed acyclic graphs (DAGs) that power Airflow, and how to customize them for your pipeline’s needs.

What's inside
Build, test, and deploy Airflow pipelines as DAGs
Automate moving and transforming data
Analyze historical datasets using backfilling
Develop custom components
Set up Airflow in production environments

About the reader
For DevOps, data engineers, machine learning engineers, and sysadmins with intermediate Python skills.

About the author
Bas Harenslak and Julian de Ruiter are data engineers with extensive experience using Airflow to develop pipelines for major companies. Bas is also an Airflow committer.

Table of Contents

PART 1 - GETTING STARTED

1 Meet Apache Airflow
2 Anatomy of an Airflow DAG
3 Scheduling in Airflow
4 Templating tasks using the Airflow context
5 Defining dependencies between tasks

PART 2 - BEYOND THE BASICS

6 Triggering workflows
7 Communicating with external systems
8 Building custom components
9 Testing
10 Running tasks in containers

PART 3 - AIRFLOW IN PRACTICE

11 Best practices
12 Operating Airflow in production
13 Securing Airflow
14 Project: Finding the fastest way to get around NYC

PART 4 - IN THE CLOUDS

15 Airflow in the clouds
16 Airflow on AWS
17 Airflow on Azure
18 Airflow in GCP

Calificaciones y opiniones

3.3
3 opiniones

Acerca del autor

Bas Harenslak and Julian de Ruiter are data engineers with extensive experience using Airflow to develop pipelines for major companies. Bas is also an Airflow committer.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.