Dask is a native parallel analytics tool designed to integrate seamlessly with the libraries you're already using, including Pandas, NumPy, and Scikit-Learn. With Dask you can crunch and work with huge datasets, using the tools you already have. And Data Science with Python and Dask is your guide to using Dask for your data projects without changing the way you work!
Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. You'll find registration instructions inside the print book.
About the Technology
An efficient data pipeline means everything for the success of a data science project. Dask is a flexible library for parallel computing in Python that makes it easy to build intuitive workflows for ingesting and analyzing large, distributed datasets. Dask provides dynamic task scheduling and parallel collections that extend the functionality of NumPy, Pandas, and Scikit-learn, enabling users to scale their code from a single laptop to a cluster of hundreds of machines with ease.
About the Book
Data Science with Python and Dask teaches you to build scalable projects that can handle massive datasets. After meeting the Dask framework, you'll analyze data in the NYC Parking Ticket database and use DataFrames to streamline your process. Then, you'll create machine learning models using Dask-ML, build interactive visualizations, and build clusters using AWS and Docker.
What's inside
Working with large, structured and unstructured datasets
Visualization with Seaborn and Datashader
Implementing your own algorithms
Building distributed apps with Dask Distributed
Packaging and deploying Dask apps
About the Reader
For data scientists and developers with experience using Python and the PyData stack.
About the Author
Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.
Table of Contents
PART 1 - The Building Blocks of scalable computing
Why scalable computing matters
Introducing Dask
PART 2 - Working with Structured Data using Dask DataFrames
Introducing Dask DataFrames
Loading data into DataFrames
Cleaning and transforming DataFrames
Summarizing and analyzing DataFrames
Visualizing DataFrames with Seaborn
Visualizing location data with Datashader
PART 3 - Extending and deploying Dask
Working with Bags and Arrays
Machine learning with Dask-ML
Scaling and deploying Dask
Rekenaars en tegnologie
Graderings en resensies
3,0
1 resensie
5
4
3
2
1
Meer oor die skrywer
Jesse Daniel is an experienced Python developer. He taught Python for Data Science at the University of Denver and leads a team of data scientists at a Denver-based media technology company.
We interviewed Jesse as a part of our Six Questions series. Check it out here.
Gradeer hierdie e-boek
Sê vir ons wat jy dink.
Lees inligting
Slimfone en tablette
Installeer die Google Play Boeke-app vir Android en iPad/iPhone. Dit sinkroniseer outomaties met jou rekening en maak dit vir jou moontlik om aanlyn of vanlyn te lees waar jy ook al is.
Skootrekenaars en rekenaars
Jy kan jou rekenaar se webblaaier gebruik om na oudioboeke wat jy op Google Play gekoop het, te luister.
E-lesers en ander toestelle
Om op e-inktoestelle soos Kobo-e-lesers te lees, moet jy ’n lêer aflaai en dit na jou toestel toe oordra. Volg die gedetailleerde hulpsentrumaanwysings om die lêers na ondersteunde e-lesers toe oor te dra.