Designing Cloud Data Platforms

·
· Distribuido por Simon and Schuster
Libro electrónico
336
Páginas
Apto

Acerca de este libro electrónico

In Designing Cloud Data Platforms, Danil Zburivsky and Lynda Partner reveal a six-layer approach that increases flexibility and reduces costs. Discover patterns for ingesting data from a variety of sources, then learn to harness pre-built services provided by cloud vendors.

Summary
Centralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is a hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you’ll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You’ll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyze it.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology
Well-designed pipelines, storage systems, and APIs eliminate the complicated scaling and maintenance required with on-prem data centers. Once you learn the patterns for designing cloud data platforms, you’ll maximize performance no matter which cloud vendor you use.

About the book
In Designing Cloud Data Platforms, Danil Zburivsky and Lynda Partner reveal a six-layer approach that increases flexibility and reduces costs. Discover patterns for ingesting data from a variety of sources, then learn to harness pre-built services provided by cloud vendors.

What's inside
Best practices for structured and unstructured data sets
Cloud-ready machine learning tools
Metadata and real-time analytics
Defensive architecture, access, and security

About the reader
For data professionals familiar with the basics of cloud computing, and Hadoop or Spark.

About the author
Danil Zburivsky has over 10 years of experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.

Table of Contents
1 Introducing the data platform
2 Why a data platform and not just a data warehouse
3 Getting bigger and leveraging the Big 3: Amazon, Microsoft Azure, and Google
4 Getting data into the platform
5 Organizing and processing data
6 Real-time data processing and analytics
7 Metadata layer architecture
8 Schema management
9 Data access and security
10 Fueling business value with data platforms

Acerca del autor

Danil Zburivsky has over 10 years of experience designing and supporting large-scale data infrastructure for enterprises across the globe. Lynda Partner is the VP of Analytics-as-a-Service at Pythian, and has been on the business side of data for over 20 years.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.