Ensembles in Machine Learning Applications

· ·
· Studies in Computational Intelligence 第 373 冊 · Springer
電子書
252
頁數

關於這本電子書

This book contains the extended papers presented at the 3rd Workshop on Supervised and Unsupervised Ensemble Methods
and their Applications (SUEMA) that was held in conjunction with the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2010, Barcelona, Catalonia, Spain).
As its two predecessors, its main theme was ensembles of supervised and unsupervised algorithms – advanced machine
learning and data mining technique. Unlike a single classification or clustering algorithm, an ensemble is a group
of algorithms, each of which first independently solves the task at hand by assigning a class or cluster label
(voting) to instances in a dataset and after that all votes are combined together to produce the final class or
cluster membership. As a result, ensembles often outperform best single algorithms in many real-world problems.

This book consists of 14 chapters, each of which can be read independently of the others. In addition to two
previous SUEMA editions, also published by Springer, many chapters in the current book include pseudo code and/or
programming code of the algorithms described in them. This was done in order to facilitate ensemble adoption in
practice and to help to both researchers and engineers developing ensemble applications.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。