The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram

Springer Science & Business Media
1
Free sample

The theories describing seemingly unrelated areas of physics have surprising analogies that have aroused the curiosity of scientists and motivated efforts to identify reasons for their existence. Comparative study of physical theories has revealed the presence of a common topological and geometric structure. The Mathematical Structure of Classical and Relativistic Physics is the first book to analyze this structure in depth, thereby exposing the relationship between (a) global physical variables and (b) space and time elements such as points, lines, surfaces, instants, and intervals. Combining this relationship with the inner and outer orientation of space and time allows one to construct a classification diagram for variables, equations, and other theoretical characteristics.

The book is divided into three parts. The first introduces the framework for the above-mentioned classification, methodically developing a geometric and topological formulation applicable to all physical laws and properties; the second applies this formulation to a detailed study of particle dynamics, electromagnetism, deformable solids, fluid dynamics, heat conduction, and gravitation. The third part further analyses the general structure of the classification diagram for variables and equations of physical theories.

Suitable for a diverse audience of physicists, engineers, and mathematicians, The Mathematical Structure of Classical and Relativistic Physics offers a valuable resource for studying the physical world. Written at a level accessible to graduate and advanced undergraduate students in mathematical physics, the book can be used as a research monograph across various areas of physics, engineering and mathematics, and as a supplemental text for a broad range of upper-level scientific coursework.

Read more

About the author

Enzo Tonti is a professor at Universita di Trieste.
Read more
5.0
1 total
Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Sep 7, 2013
Read more
Pages
514
Read more
ISBN
9781461474227
Read more
Language
English
Read more
Genres
Mathematics / Applied
Mathematics / Differential Equations / General
Mathematics / General
Mathematics / Topology
Science / Physics / Mathematical & Computational
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
With Wiley’s Enhanced E-Text, you get all the benefits of a downloadable, reflowable eBook with added resources to make your study time more effective, including:

• Embedded & searchable equations, figures & tables
• Math XML
• Index with linked pages numbers for easy reference
• Redrawn full color figures to allow for easier identification

Elementary Differential Equations and Boundary Value Problems 11e, like its predecessors, is written from the viewpoint of the applied mathematician, whose interest in differential equations may sometimes be quite theoretical, sometimes intensely practical, and often somewhere in between. The authors have sought to combine a sound and accurate (but not abstract) exposition of the elementary theory of differential equations with considerable material on methods of solution, analysis, and approximation that have proved useful in a wide variety of applications. While the general structure of the book remains unchanged, some notable changes have been made to improve the clarity and readability of basic material about differential equations and their applications. In addition to expanded explanations, the 11th edition includes new problems, updated figures and examples to help motivate students.

The program is primarily intended for undergraduate students of mathematics, science, or engineering, who typically take a course on differential equations during their first or second year of study. The main prerequisite for engaging with the program is a working knowledge of calculus, gained from a normal twoï¿1?2 or threeï¿1?2 semester course sequence or its equivalent. Some familiarity with matrices will also be helpful in the chapters on systems of differential equations.
This revised and updated text, now in its second edition, continues to present the theoretical concepts of methods of solutions of ordinary and partial differential equations. It equips students with the various tools and techniques to model different physical problems using such equations. The book discusses the basic concepts of ordinary and partial differential equations. It contains different methods of solving ordinary differential equations of first order and higher degree. It gives the solution methodology for linear differential equations with constant and variable coefficients and linear differential equations of second order. The text elaborates simultaneous linear differential equations, total differential equations, and partial differential equations along with the series solution of second order linear differential equations. It also covers Bessel’s and Legendre’s equations and functions, and the Laplace transform. Finally, the book revisits partial differential equations to solve the Laplace equation, wave equation and diffusion equation, and discusses the methods to solve partial differential equations using the Fourier transform. A large number of solved examples as well as exercises at the end of chapters help the students comprehend and strengthen the underlying concepts. The book is intended for undergraduate and postgraduate students of Mathematics (B.A./B.Sc., M.A./M.Sc.), and undergraduate students of all branches of engineering (B.E./B.Tech.), as part of their course in Engineering Mathematics. New to the SECOND Edition • Includes new sections and subsections such as applications of differential equations, special substitution (Lagrange and Riccati), solutions of non-linear equations which are exact, method of variation of parameters for linear equations of order higher than two, and method of undetermined coefficients • Incorporates several worked-out examples and exercises with their answers • Contains a new Chapter 19 on ‘Z-Transforms and its Applications’.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.