Filtrations on the Homology of Algebraic Varieties: Issue 529

American Mathematical Soc.
Free sample

This work provides a detailed exposition of a classical topic from a very recent viewpoint. Friedlander and Mazur describe some foundational aspects of 'Lawson homology' for complex projective algebraic varieties, a homology theory defined in terms of homotopy groups of spaces of algebraic cycles. Attention is paid to methods of group completing abelian topological monoids. The authors study properties of Chow varieties, especially in connection with algebraic correspondences relating algebraic varieties. Operations on Lawson homology are introduced and analyzed. These operations lead to a filtration on the singular homology of algebraic varieties, which is identified in terms of correspondences and related to classical filtrations of Hodge and Grothendieck.
Read more

About the author

Friedlander is Professor of Mathematics at Northwestern University.

Read more
Loading...

Additional Information

Publisher
American Mathematical Soc.
Read more
Published on
Dec 31, 1994
Read more
Pages
110
Read more
ISBN
9780821825914
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / General
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.