Fault Location on Power Networks

· ·
· Springer Science & Business Media
3.7
3 則評論
電子書
425

關於本電子書

Electric power systems will always be exposed to the failure of their components. When a fault occurs on a line, it is crucial for the fault location to be identified as accurately as possible, allowing the damage caused by the fault to be repaired quickly before the line is put back into service. Fault Location on Power Lines enables readers to pinpoint the location of a fault on power lines following a disturbance. If a fault location cannot be identified quickly and this causes prolonged line outage during a period of peak load, severe economic losses may occur and reliability of service may be questioned. The growth in size and complexity of power systems has increased the impact of failure to locate a fault and therefore heightened the importance of fault location research studies, attracting widespread attention among researchers in recent years.

Fault location cannot be truly understood, applied, set, tested and analysed without a deep and detailed knowledge of the interiors of fault locators. Consequently, the nine chapters are organised according to the design of different locators. The authors do not simply refer the reader to manufacturers’ documentation, but instead have compiled detailed information to allow for in-depth comparison.

Fault Location on Power Lines describes basic algorithms used in fault locators, focusing on fault location on overhead transmission lines, but also covering fault location in distribution networks. An application of artificial intelligence in this field is also presented, to help the reader to understand all aspects of fault location on overhead lines, including both the design and application standpoints.

Professional engineers, researchers, and postgraduate and undergraduate students will find Fault Location on Power Lines a valuable resource, which enables them to reproduce complete algorithms of digital fault locators in their basic forms.

評分和評論

3.7
3 則評論

關於作者

Murari Mohan Saha received a B.Sc.E.E. from Bangladesh University of Technology (BUET), Dhaka, in 1968 and completed his M.Sc.E.E. in 1970. From 1969-1971, he was a lecturer at the E.E. department at BUET. In 1972 he completed his M.S.E.E and in 1975 he was awarded his PhD from The Technical University of Warsaw, Poland. He joined ASEA, Sweden, in 1975 as a development engineer and is currently a senior research and development engineer at ABB AB , Västerås, Sweden. His areas of interest are the measurement of transformers; power system analysis and simulation; and digital protective relays.

Jan Izykowski received his MSc, PhD and D.Sc. (habilitation) degrees from the Wroclaw University of Technology (WUT) in 1973, 1976 and 2001, respectively. In 1973 he joined the Institute of Electrical Engineering of the WUT where he is presently an associate professor. Currently he is a director of the Institute of Electric Power Engineering of WUT. He is a senior member of IEEE (USA). His research interests are in power system transients simulation and analysis; power system protection and control; fault location; and transient phenomena of instrument transformers.

Eugeniusz Rosolowski received his MSc degree in Electrical Engineering from the WUT in 1972. From 1974 to 1977, he studied in Kyiv Politechnical Institute (Ukraine) from where he received his PhD in 1978. In 1993 he received his D.Sc. (habilitation) from the WUT, where he is presently a professor. He is a senior member of IEEE (USA). His research interests are in power system analysis; EMTP application; digital protection; and intelligence system application to power system protection.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。