Fractal Functions, Fractal Surfaces, and Wavelets

· Academic Press
Carte electronică
383
Pagini
Eligibilă

Despre această carte electronică

Fractal Functions, Fractal Surfaces, and Wavelets is the first systematic exposition of the theory of fractal surfaces, a natural outgrowth of fractal sets and fractal functions. It is also the first treatment to bring these general considerations to bear on the burgeoning field of wavelets. The text is based on Massopusts work on and contributions to the theory of fractal functions, and the author uses a number of tools--including analysis, topology, algebra, and probability theory--to introduce readers to this new subject. Though much of the material presented in this book is relatively current (developed in the past decade by the author and his colleagues) and fairly specialized, an informative background is provided for those - First systematic treatment of fractal surfaces - Links fractals and wavelets - Provides background for those entering the field - Contains color insert

Despre autor

Peter R. Massopust is a Privatdozent in the Center of Mathematics at the Technical University of Munich, Germany. He received his Ph.D. in Mathematics from the Georgia Institute of Technology in Atlanta, Georgia, USA, and his habilitation from the Technical University of Munich. He worked at several universities in the United States, at the Sandia National Laboratories in Albuquerque (USA), and as a senior research scientist in industry before returning to the academic environment. He has written more than sixty peer-reviewed articles in the mathematical areas of Fourier Analysis, Approximation Theory, Fractals, Splines, and Harmonic Analysis and more than 20 technical reports while working in the non-academic environment. He has authored or coauthored two textbooks and two monographs, and coedited two Contemporary Mathematics Volumes and several Special Issues for peer-reviewed journals. He is on the editorial board of several mathematics journals and has given more than one hundred invited presentations at national and international conferences, workshops, and seminars.

Evaluează cartea electronică

Spune-ne ce crezi.

Informații despre lectură

Smartphone-uri și tablete
Instalează aplicația Cărți Google Play pentru Android și iPad/iPhone. Se sincronizează automat cu contul tău și poți să citești online sau offline de oriunde te afli.
Laptopuri și computere
Poți să asculți cărțile audio achiziționate pe Google Play folosind browserul web al computerului.
Dispozitive eReader și alte dispozitive
Ca să citești pe dispozitive pentru citit cărți electronice, cum ar fi eReaderul Kobo, trebuie să descarci un fișier și să îl transferi pe dispozitiv. Urmează instrucțiunile detaliate din Centrul de ajutor pentru a transfera fișiere pe dispozitivele eReader compatibile.