Fractals and Universal Spaces in Dimension Theory

· Springer Science & Business Media
4.0
2 ביקורות
ספר דיגיטלי
242
דפים

מידע על הספר הדיגיטלי הזה

Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric).

The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval.

Unique features include:
* The use of graphics to illustrate the fractal view of these spaces;
* Lucid coverage of a range of topics including point-set topology and mapping theory, fractal geometry, and algebraic topology;
* A final chapter contains surveys and provides historical context for related research that includes other imbedding theorems, graph theory, and closed imbeddings;
* Each chapter contains a comment section that provides historical context with references that serve as a bridge to the literature.

This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics.

דירוגים וביקורות

4.0
2 ביקורות

רוצה לדרג את הספר הדיגיטלי הזה?

נשמח לשמוע מה דעתך.

איך קוראים את הספר

סמארטפונים וטאבלטים
כל מה שצריך לעשות הוא להתקין את האפליקציה של Google Play Books ל-Android או ל-iPad/iPhone‏. היא מסתנכרנת באופן אוטומטי עם החשבון שלך ומאפשרת לך לקרוא מכל מקום, גם ללא חיבור לאינטרנט.
מחשבים ניידים ושולחניים
ניתן להאזין לספרי אודיו שנרכשו ב-Google Play באמצעות דפדפן האינטרנט של המחשב.
eReaders ומכשירים אחרים
כדי לקרוא במכשירים עם תצוגת דיו אלקטרוני (e-ink) כמו הקוראים האלקטרוניים של Kobo, צריך להוריד קובץ ולהעביר אותו למכשיר. יש לפעול לפי ההוראות המפורטות במרכז העזרה כדי להעביר את הקבצים לקוראים אלקטרוניים נתמכים.