Fractals and Universal Spaces in Dimension Theory

· Springer Science & Business Media
4.0
2 則評論
電子書
242
頁數

關於這本電子書

Historically, for metric spaces the quest for universal spaces in dimension theory spanned approximately a century of mathematical research. The history breaks naturally into two periods - the classical (separable metric) and the modern (not-necessarily separable metric).

The classical theory is now well documented in several books. This monograph is the first book to unify the modern theory from 1960-2007. Like the classical theory, the modern theory fundamentally involves the unit interval.

Unique features include:
* The use of graphics to illustrate the fractal view of these spaces;
* Lucid coverage of a range of topics including point-set topology and mapping theory, fractal geometry, and algebraic topology;
* A final chapter contains surveys and provides historical context for related research that includes other imbedding theorems, graph theory, and closed imbeddings;
* Each chapter contains a comment section that provides historical context with references that serve as a bridge to the literature.

This monograph will be useful to topologists, to mathematicians working in fractal geometry, and to historians of mathematics. Being the first monograph to focus on the connection between generalized fractals and universal spaces in dimension theory, it will be a natural text for graduate seminars or self-study - the interested reader will find many relevant open problems which will create further research into these topics.

評分和評論

4.0
2 則評論

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。