GTPases: Versatile Regulators of Signal Transduction in Plants

· · ·
· Springer
eBook
81
Pages

About this eBook

G proteins are the key regulators for a wide range of cellular processes in animals and plants. In comparison to animals and yeast, plants have a single Rho-GTPase subfamily called Rho-like GTPases (ROPs). The ROP family of monomeric GTPases has emerged as a versatile and key regulator in plant signal transduction processes. During the past few years’ studies on plant RHO-type (ROP) GTPase have generated new insights into their role in diverse processes ranging from cytoskeletal organization, polar growth, development to stress and hormonal responses. Studies have shown that plants have evolved specific regulators and effector molecules. ROP GTPases possess the ability to interact with these multiple regulator and effector molecules that ultimately determines their signaling specificity. Recently, genome wide studies in plants have shown that the Arabidopsis genome encodes 93, and rice has nearly 85 small GTPase homologs. And we have been able to identify four new homologs in the rice genome. Here, we focus on the complete phylogenetic, domain, structural and expression analysis during stress and various developmental processes of small GTPases in plants. The comparison of gene expression patterns of the individual members of the GTPase family may help to reveal potential plant specific signaling mechanisms and their relevance. Also, we are summarizing the role of currently known ROP GTPases and their interacting proteins with brief description, simultaneously, comparing their expression pattern based on microarray data. Overall, we will be discussing the functional genomic perspective of plant Rho like GTPases and their role in regulating several physiological processes such as stress, hormonal, pollen tube, root hair-growth and other developmental responses.​

About the author

Girdhar K. Pandey

Department of Plant Molecular Biology

Delhi University South Campus

Dhaula Kuan, New Delhi

India

Manisha Sharma

Department of Plant Molecular Biology

Delhi University South Campus

Dhaula Kuan, New Delhi

India

Amita Pandey

Department of Plant Molecular Biology

Delhi University South Campus

Dhaula Kuan, New Delhi

India

Thiruvekadam Shanmugam

Division of Biosciences and Bioinformatics

Myongji University

Kyunggi-do

Republic of South Korea

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.