Handbook of Mobility Data Mining, Volume 3: Mobility Data-Driven Applications

· Elsevier
電子書
242
頁數
符合資格

關於這本電子書

Handbook of Mobility Data Mining: Volume Three: Mobility Data-Driven Applications introduces the fundamental technologies of mobile big data mining (MDM), advanced AI methods, and upper-level applications, helping readers comprehensively understand MDM with a bottom-up approach. The book explains how to preprocess mobile big data, visualize urban mobility, simulate and predict human travel behavior, and assess urban mobility characteristics and their matching performance as conditions and constraints in transport, emergency management, and sustainability development systems. The book contains crucial information for researchers, engineers, operators, administrators, and policymakers seeking greater understanding of current technologies' infra-knowledge structure and limitations. The book introduces how to design MDM platforms that adapt to the evolving mobility environment—and new types of transportation and users—based on an integrated solution that utilizes sensing and communication capabilities to tackle significant challenges faced by the MDM field. This third volume looks at various cases studies to illustrate and explore the methods introduced in the first two volumes, covering topics such as Intelligent Transportation Management, Smart Emergency Management—detailing cases such as the Fukushima earthquake, Hurricane Katrina, and COVID-19—and Urban Sustainability Development, covering bicycle and railway travel behavior, mobility inequality, and road and light pollution inequality. - Introduces MDM applications from six major areas: intelligent transportation management, shared transportation systems, disaster management, pandemic response, low-carbon transportation, and social equality - Uses case studies to examine possible solutions that facilitate ethical, secure, and controlled emergency management based on mobile big data - Helps develop policy innovations beneficial to citizens, businesses, and society - Stems from the editor's strong network of global transport authorities and transport companies, providing a solid knowledge structure and data foundation as well as geographical and stakeholder coverage

關於作者

Haoran (Ronan) Zhang is Assistant Professor in the Center for Spatial Information Science at the University of Tokyo, a Researcher at the School of Business Society and Engineering at Mälardalen University in Sweden, and Senior Scientist at Locationmind Inc. in Japan. His research includes smart supply chain technologies, GPS data in shared transportation, urban sustainable performance, GIS technologies in renewable energy systems, and smart cities. He is author of numerous journal articles and Editorial Board Member of several international academic journals. He has Ph.D.’s in both Engineering and Sociocultural Environment and was awarded Excellent Young Researcher by Japan’s Ministry of Education, Culture, Sports, Science and Technology.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。