Measure and Integration: Publications 1997-2011

· Springer Science & Business Media
Ebook
508
Pages

About this ebook

This collection of Heinz König’s publications connects to his book of 1997 “Measure and Integration” and presents significant developments in the subject from then up to the present day. The result is a consistent new version of measure theory, including selected applications. The basic step is the introduction of the inner • (bullet) and outer • (bullet) premeasures and their extension to unique maximal measures. New “envelopes” for the initial set function (to replace the traditional Carathéodory outer measures) have been created, which lead to much simpler and more explicit treatment. In view of these new concepts, the main results are unmatched in scope and plainness, as well as in explicitness. Important examples are the formation of products, a unified Daniell-Stone-Riesz representation theorem, and projective limits.

Further to the contributions in this volume, after 2011 Heinz König published two more articles that round up his work: On the marginals of probability contents on lattices (Mathematika 58, No. 2, 319-323, 2012), and Measure and integration: the basic extension and representation theorems in terms of new inner and outer envelopes (Indag. Math., New Ser. 25, No. 2, 305-314, 2014).


About the author

Heinz König is a distinguished analyst, who has given lasting contributions to functional analysis, distribution theory, convex analysis, mathematical economics and many other fields of mathematics. Typical of his work is the analysis or creation of basic new concepts from most original viewpoints. Heinz König gave a large number of original, short and elegant proofs of fundamental results in mathematics. Most remarkable is the new theory of measure and integration he developed in the last two decades.

Born in Stettin (Szczecin/Poland), Heinz König has been a professor at the University of Saarland (Germany) since 1965 and a visiting professor at many prestigious universities around the world.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.