Genome Stability: From Virus to Human Application, Edition 2

·
· Translational Epigenetics Book 26 · Academic Press
5.0
1 review
Ebook
760
Pages
Eligible

About this ebook

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging.

This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability.

  • A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects
  • Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability
  • Contains applications of genome instability research and outcomes for human disease
  • Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair

Ratings and reviews

5.0
1 review

About the author

Dr. Igor Kovalchuk is the Principle Investigator in the Plant Biotechnology laboratory at the University of Lethbridge. His lab studies genetic and epigenetic regulation of plant response to stress as well as develops various methods for improvement of plant transformation. He is particularly interested in the transgenerational effects of stress and microevolution of plant stress tolerance/resistance.He has substantial expertise in plant stress tolerance and plant transgenesis.

Dr. Olga Kovalchuk is the Principle Investigator of the Human Epigenetics laboratory at the University of Lethbridge. Her lab studies the role of epigenetic dysregulation in carcinogenesis, epigenetic regulation of the cancer treatment responses, radiation epigenetics and the role of epigenetic changes in genome stability and carcinogenesis, radiation-induced oncogenic signaling, and radiation-induced DNA damage, repair, and recombination.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.