Introduction to Intersection Theory in Algebraic Geometry

· Regional conference series in mathematics Libro 54 · American Mathematical Soc.
Libro electrónico
82
Páginas

Acerca de este libro electrónico

This book introduces some of the main ideas of modern intersection theory, traces their origins in classical geometry and sketches a few typical applications. It requires little technical background: much of the material is accessible to graduate students in mathematics. A broad survey, the book touches on many topics, most importantly introducing a powerful new approach developed by the author and R. MacPherson. It was written from the expository lectures delivered at the NSF-supported CBMS conference at George Mason University, held June 27-July 1, 1983.The author describes the construction and computation of intersection products by means of the geometry of normal cones. In the case of properly intersecting varieties, this yields Samuel's intersection multiplicity; at the other extreme it gives the self-intersection formula in terms of a Chern class of the normal bundle; in general it produces the excess intersection formula of the author and R. MacPherson. Among the applications presented are formulas for degeneracy loci, residual intersections, and multiple point loci; dynamic interpretations of intersection products; Schubert calculus and solutions to enumerative geometry problems; and Riemann-Roch theorems.

Acerca del autor

Fulton is president of Solimar Research Group in Ventura, California.

Califica este libro electrónico

Cuéntanos lo que piensas.

Información de lectura

Smartphones y tablets
Instala la app de Google Play Libros para Android y iPad/iPhone. Como se sincroniza de manera automática con tu cuenta, te permite leer en línea o sin conexión en cualquier lugar.
Laptops y computadoras
Para escuchar audiolibros adquiridos en Google Play, usa el navegador web de tu computadora.
Lectores electrónicos y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos Kobo, deberás descargar un archivo y transferirlo a tu dispositivo. Sigue las instrucciones detalladas que aparecen en el Centro de ayuda para transferir los archivos a lectores de libros electrónicos compatibles.