Augmentation of Peripheral Chemosensitivity During Hypermetabolism: A Role in Exercise Hyperpnoea?

· Universal-Publishers
Ebook
364
Pages
Eligible

About this ebook

The carotid body initiates reflexes aimed principally at the homeostatic maintenance of blood gas tensions. This thesis tested the hypothesis that the carotid body is also a physiological glucosensor, with a role in mediating exercise hyperpnoea. In anaesthetised rats, insulin-induced hypoglycaemia (from ca. 6.5 to 2.8 mmol L-1) caused an ca. two-fold increase of oxygen consumption that was associated with a significant, carotid body-dependent increase in ventilation (from ca. 420 to 640 ml min-1 kg-1) without change in blood gas tensions. This hypoglycaemic hyperpnoea was associated with hypokalaemia and no alterations of ventilation or metabolism were observed in euglycaemic, control studies, thus excluding any role for [K]] or insulin. During hypermetabolism, a proportional augmentation of peripheral CO2 gain, measured from the phrenic electroneurogram during artificial ventilation, was shown to maintain the arterial blood gas status. In vitro, measurements of single-fibre chemoafferent discharge showed that low [glucose], over a physiological range and during normoxia, increased neither the carotid baseline discharge nor the CO2 sensitivity. Taken together, these results demonstrate that the carotid body is not a physiological sensor of glucose but augmentation of the carotid body chemosensitivity via an undetermined yet, hypermetabolism-related factor(s) is most likely to be involved in exercise hyperpnoea.

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.