Graphene-based Composites for Electrochemical Energy Storage

· Springer
Ebook
105
Pages

About this ebook

This thesis focuses on the synthesis and characterization of various carbon allotropes (e.g., graphene oxide/graphene, graphene foam (GF), GF/carbon nanotube (CNT) hybrids) and their composites for electrochemical energy storage applications. The coverage ranges from materials synthesis to electrochemical analysis, to state-of-the-art electrochemical energy storage devices, and demonstrates how electrochemical characterization techniques can be integrated and applied in the active materials selection and nanostructure design process. Readers will also discover the latest findings on graphene-based electrochemical energy storage devices including asymmetric supercapacitors, lithium ion batteries and flexible Ni/Fe batteries.
Given the unique experimental procedures and methods, the systematic electrochemical analysis, and the creative flexible energy storage device design presented, the thesis offers a valuable reference guide for researchers and newcomers to the field of carbon-based electrochemical energy storage.

About the author

Dr. Jilei Liu is currently working as a research Fellow at Nanyang Technological University (NTU). He received his B.Sc in Material Physics from Hunan University (Changsha, China, 2008), M. Sc from Shanghai Institute of Ceramics, Chinese Academy of Sciences (Shanghai, China, 2011)and Ph.D. degree from Nanyang Technological University (NTU, Singapore, 2015). Dr. Liu’s research interests include synthesis and characterization of carbon allotropes (graphene, CNTs, and graphene/CNTs hybrids), and their applications in electrochemical energy storage devices (i.e. supercapacitors, Li+/Na+/K+ ion batteries, aqueous alkaline batteries, etc).

Rate this ebook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Center instructions to transfer the files to supported eReaders.