Learning Data Mining with Python: Edition 2

· Packt Publishing Ltd
電子書
358

關於本電子書

Harness the power of Python to develop data mining applications, analyze data, delve into machine learning, explore object detection using Deep Neural Networks, and create insightful predictive models.About This BookUse a wide variety of Python libraries for practical data mining purposes.Learn how to find, manipulate, analyze, and visualize data using Python.Step-by-step instructions on data mining techniques with Python that have real-world applications.Who This Book Is For

If you are a Python programmer who wants to get started with data mining, then this book is for you. If you are a data analyst who wants to leverage the power of Python to perform data mining efficiently, this book will also help you. No previous experience with data mining is expected.

What You Will LearnApply data mining concepts to real-world problemsPredict the outcome of sports matches based on past resultsDetermine the author of a document based on their writing styleUse APIs to download datasets from social media and other online servicesFind and extract good features from difficult datasetsCreate models that solve real-world problemsDesign and develop data mining applications using a variety of datasetsPerform object detection in images using Deep Neural NetworksFind meaningful insights from your data through intuitive visualizationsCompute on big data, including real-time data from the internetIn Detail

This book teaches you to design and develop data mining applications using a variety of datasets, starting with basic classification and affinity analysis. This book covers a large number of libraries available in Python, including the Jupyter Notebook, pandas, scikit-learn, and NLTK.

You will gain hands on experience with complex data types including text, images, and graphs. You will also discover object detection using Deep Neural Networks, which is one of the big, difficult areas of machine learning right now.

With restructured examples and code samples updated for the latest edition of Python, each chapter of this book introduces you to new algorithms and techniques. By the end of the book, you will have great insights into using Python for data mining and understanding of the algorithms as well as implementations.

Style and approach

This book will be your comprehensive guide to learning the various data mining techniques and implementing them in Python. A variety of real-world datasets is used to explain data mining techniques in a very crisp and easy to understand manner.

關於作者

Robert Layton is a data scientist investigating data-driven applications to businesses across a number of sectors. He received a PhD investigating cybercrime analytics from the Internet Commerce Security Laboratory at Federation University Australia, before moving into industry, starting his own data analytics company dataPipeline. Next, he created Eureaktive, which works with tech-based startups on developing their proof-of-concepts and early-stage prototypes. Robert also runs the LearningTensorFlow website, which is one of the world's premier tutorial websites for Google's TensorFlow library. Robert is an active member of the Python community, having used Python for more than 8 years. He has presented at PyConAU for the last four years and works with Python Charmers to provide Python-based training for businesses and professionals from a wide range of organisations. Robert can be best reached via Twitter @robertlayton

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。