Lectures on Risk Theory

· Springer Science & Business Media
E-book
200
Pages

À propos de cet e-book

Twenty-five years ago, Hans Blihlmann published his famous monograph Mathe matical Methods in Risk Theory in the series Grundlehren der Mathematischen Wis8enschaften and thus established nonlife actuarial mathematics as a recognized subject of probability theory and statistics with a glance towards economics. This book was my guide to the subject when I gave my first course on nonlife actuarial mathematics in Summer 1988, but at the same time I tried to incorporate into my lectures parts of the rapidly growing literature in this area which to a large extent was inspired by Blihlmann's book. The present book is entirely devoted to a single topic of risk theory: Its subject is the development in time of a fixed portfolio of risks. The book thus concentrates on the claim number process and its relatives, the claim arrival process, the aggregate claims process, the risk process, and the reserve process. Particular emphasis is laid on characterizations of various classes of claim number processes, which provide alternative criteria for model selection, and on their relation to the trinity of the binomial, Poisson, and negativebinomial distributions. Special attention is also paid to the mixed Poisson process, which is a useful model in many applications, to the problems of thinning, decomposition, and superposition of risk processe8, which are important with regard to reinsurance, and to the role of martingales, which occur in a natural way in canonical situations.

Donner une note à cet e-book

Dites-nous ce que vous en pensez.

Informations sur la lecture

Smartphones et tablettes
Installez l'application Google Play Livres pour Android et iPad ou iPhone. Elle se synchronise automatiquement avec votre compte et vous permet de lire des livres en ligne ou hors connexion, où que vous soyez.
Ordinateurs portables et de bureau
Vous pouvez écouter les livres audio achetés sur Google Play à l'aide du navigateur Web de votre ordinateur.
Liseuses et autres appareils
Pour lire sur des appareils e-Ink, comme les liseuses Kobo, vous devez télécharger un fichier et le transférer sur l'appareil en question. Suivez les instructions détaillées du Centre d'aide pour transférer les fichiers sur les liseuses compatibles.