Linear Estimation and Detection in Krylov Subspaces

· Foundations in Signal Processing, Communications and Networking 第 1 冊 · Springer Science & Business Media
電子書
232
頁數

關於這本電子書

One major area in the theory of statistical signal processing is reduced-rank - timation where optimal linear estimators are approximated in low-dimensional subspaces, e.g., in order to reduce the noise in overmodeled problems, - hance the performance in case of estimated statistics, and/or save compu- tional complexity in the design of the estimator which requires the solution of linear equation systems. This book provides a comprehensive overview over reduced-rank ?lters where the main emphasis is put on matrix-valued ?lters whose design requires the solution of linear systems with multiple right-hand sides. In particular, the multistage matrix Wiener ?lter, i.e., a reduced-rank Wiener ?lter based on the multistage decomposition, is derived in its most general form. In numerical mathematics, iterative block Krylov methods are very po- lar techniques for solving systems of linear equations with multiple right-hand sides, especially if the systems are large and sparse. Besides presenting a - tailed overview of the most important block Krylov methods in Chapter 3, which may also serve as an introduction to the topic, their connection to the multistage matrix Wiener ?lter is revealed in this book. Especially, the reader will learn the restrictions of the multistage matrix Wiener ?lter which are necessary in order to end up in a block Krylov method. This relationship is of great theoretical importance because it connects two di?erent ?elds of mathematics, viz., statistical signal processing and numerical linear algebra.

為這本電子書評分

請分享你的寶貴意見。

閱讀資訊

智能手機和平板電腦
請安裝 Android 版iPad/iPhone 版「Google Play 圖書」應用程式。這個應用程式會自動與你的帳戶保持同步,讓你隨時隨地上網或離線閱讀。
手提電腦和電腦
你可以使用電腦的網絡瀏覽器聆聽在 Google Play 上購買的有聲書。
電子書閱讀器及其他裝置
如要在 Kobo 等電子墨水裝置上閱覽書籍,你需要下載檔案並傳輸到你的裝置。請按照說明中心的詳細指示,將檔案傳輸到支援的電子書閱讀器。