Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many.
Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful.
Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside
A no-nonsense introduction
Examples showing common ML tasks
Everyday data analysis
Implementing classic algorithms like Apriori and Adaboos
Table of ContentsPART 1 CLASSIFICATION
Machine learning basics
Classifying with k-Nearest Neighbors
Splitting datasets one feature at a time: decision trees
Classifying with probability theory: naïve Bayes
Logistic regression
Support vector machines
Improving classification with the AdaBoost meta algorithm
PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION
Predicting numeric values: regression
Tree-based regression
PART 3 UNSUPERVISED LEARNING
Grouping unlabeled items using k-means clustering
Association analysis with the Apriori algorithm
Efficiently finding frequent itemsets with FP-growth
PART 4 ADDITIONAL TOOLS
Using principal component analysis to simplify data
Simplifying data with the singular value decomposition
Big data and MapReduce
Computers & technology
مصنف کے بارے میں
Peter Harrington is a professional developer and data scientist. He holds five US patents and his work has been published in numerous academic journals.
اس ای بک کی درجہ بندی کریں
ہمیں اپنی رائے سے نوازیں۔
پڑھنے کی معلومات
اسمارٹ فونز اور ٹیب لیٹس
Android اور iPad/iPhone.کیلئے Google Play کتابیں ایپ انسٹال کریں۔ یہ خودکار طور پر آپ کے اکاؤنٹ سے سینک ہو جاتی ہے اور آپ جہاں کہیں بھی ہوں آپ کو آن لائن یا آف لائن پڑھنے دیتی ہے۔
لیپ ٹاپس اور کمپیوٹرز
آپ اپنے کمپیوٹر کے ویب براؤزر کا استعمال کر کے Google Play پر خریدی گئی آڈیو بکس سن سکتے ہیں۔
ای ریڈرز اور دیگر آلات
Kobo ای ریڈرز جیسے ای-انک آلات پر پڑھنے کے لیے، آپ کو ایک فائل ڈاؤن لوڈ کرنے اور اسے اپنے آلے پر منتقل کرنے کی ضرورت ہوگی۔ فائلز تعاون یافتہ ای ریڈرز کو منتقل کرنے کے لیے تفصیلی ہیلپ سینٹر کی ہدایات کی پیروی کریں۔