Machine Learning in Action is unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. You'll use the flexible Python programming language to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification. About the Book A machine is said to learn when its performance improves with experience. Learning requires algorithms and programs that capture data and ferret out the interestingor useful patterns. Once the specialized domain of analysts and mathematicians, machine learning is becoming a skill needed by many.
Machine Learning in Action is a clearly written tutorial for developers. It avoids academic language and takes you straight to the techniques you'll use in your day-to-day work. Many (Python) examples present the core algorithms of statistical data processing, data analysis, and data visualization in code you can reuse. You'll understand the concepts and how they fit in with tactical tasks like classification, forecasting, recommendations, and higher-level features like summarization and simplification.
Readers need no prior experience with machine learning or statistical processing. Familiarity with Python is helpful.
Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book. What's Inside
A no-nonsense introduction
Examples showing common ML tasks
Everyday data analysis
Implementing classic algorithms like Apriori and Adaboos
Table of ContentsPART 1 CLASSIFICATION
Machine learning basics
Classifying with k-Nearest Neighbors
Splitting datasets one feature at a time: decision trees
Classifying with probability theory: naïve Bayes
Logistic regression
Support vector machines
Improving classification with the AdaBoost meta algorithm
PART 2 FORECASTING NUMERIC VALUES WITH REGRESSION
Predicting numeric values: regression
Tree-based regression
PART 3 UNSUPERVISED LEARNING
Grouping unlabeled items using k-means clustering
Association analysis with the Apriori algorithm
Efficiently finding frequent itemsets with FP-growth
PART 4 ADDITIONAL TOOLS
Using principal component analysis to simplify data
Simplifying data with the singular value decomposition
Big data and MapReduce
Máy tính & công nghệ
Giới thiệu tác giả
Peter Harrington is a professional developer and data scientist. He holds five US patents and his work has been published in numerous academic journals.
Xếp hạng sách điện tử này
Cho chúng tôi biết suy nghĩ của bạn.
Đọc thông tin
Điện thoại thông minh và máy tính bảng
Cài đặt ứng dụng Google Play Sách cho Android và iPad/iPhone. Ứng dụng sẽ tự động đồng bộ hóa với tài khoản của bạn và cho phép bạn đọc trực tuyến hoặc ngoại tuyến dù cho bạn ở đâu.
Máy tính xách tay và máy tính
Bạn có thể nghe các sách nói đã mua trên Google Play thông qua trình duyệt web trên máy tính.
Thiết bị đọc sách điện tử và các thiết bị khác
Để đọc trên thiết bị e-ink như máy đọc sách điện tử Kobo, bạn sẽ cần tải tệp xuống và chuyển tệp đó sang thiết bị của mình. Hãy làm theo hướng dẫn chi tiết trong Trung tâm trợ giúp để chuyển tệp sang máy đọc sách điện tử được hỗ trợ.