Markov Networks in Evolutionary Computation

¡
¡ Adaptation, Learning, and Optimization āļ´āˇœāļ­ 14 ¡ Springer Science & Business Media
āļ‰-āļ´āˇœāļ­
244
āļ´āˇ’āļ§āˇ”

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļœāˇāļą

Markov networks and other probabilistic graphical modes have recently received an upsurge in attention from Evolutionary computation community, particularly in the area of Estimation of distribution algorithms (EDAs). EDAs have arisen as one of the most successful experiences in the application of machine learning methods in optimization, mainly due to their efficiency to solve complex real-world optimization problems and their suitability for theoretical analysis.

This book focuses on the different steps involved in the conception, implementation and application of EDAs that use Markov networks, and undirected models in general. It can serve as a general introduction to EDAs but covers also an important current void in the study of these algorithms by explaining the specificities and benefits of modeling optimization problems by means of undirected probabilistic models.

All major developments to date in the progressive introduction of Markov networks based EDAs are reviewed in the book. Hot current research trends and future perspectives in the enhancement and applicability of EDAs are also covered. The contributions included in the book address topics as relevant as the application of probabilistic-based fitness models, the use of belief propagation algorithms in EDAs and the application of Markov network based EDAs to real-world optimization problems. The book should be of interest to researchers and practitioners from areas such as optimization, evolutionary computation, and machine learning.

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļ…āļœāļēāļąāˇŠāļą

āļ”āļļ āˇƒāˇ’āļ­āļą āļ¯āˇ™āļē āļ…āļ´āļ§ āļšāˇ’āļēāļąāˇŠāļą.

āļšāˇ’āļē⎀⎓āļ¸āˇš āļ­āˇœāļģāļ­āˇ”āļģ⎔

⎃⎊āļ¸āˇāļģ⎊āļ§āˇŠ āļ¯āˇ”āļģāļšāļŽāļą āˇƒāˇ„ āļ§āˇāļļ⎊āļŊāļ§āˇŠ
Android āˇƒāˇ„ iPad/iPhone ⎃āļŗāˇ„āˇ Google Play āļ´āˇœāļ­āˇŠ āļē⎙āļ¯āˇ”āļ¸ āˇƒāˇŠāļŽāˇāļ´āļąāļē āļšāļģāļąāˇŠāļą. āļ‘āļē āļ”āļļ⎚ āļœāˇ’āļĢ⎔āļ¸ āˇƒāļ¸āļŸ āˇƒāˇŠāˇ€āļēāļ‚āļšāˇŠâ€āļģ⎓āļē⎀ ⎃āļ¸āļ¸āˇ”⎄⎔āļģ⎊āļ­ āļšāļģāļą āļ…āļ­āļģ āļ”āļļāļ§ āļ•āļąāˇ‘āļ¸ āļ­āˇāļąāļš āˇƒāˇ’āļ§ āˇƒāļļ⎐āļŗāˇ’⎀ āˇ„āˇ āļąāˇœāļļ⎐āļŗāˇ’⎀ āļšāˇ’āļē⎀⎓āļ¸āļ§ āļ‰āļŠ āˇƒāļŊ⎃āļē⎒.
āļŊ⎐āļ´āˇŠāļ§āˇœāļ´āˇŠ āˇƒāˇ„ āļ´āļģ⎒āļœāļĢāļš
āļ”āļļāļ§ āļ”āļļ⎚ āļ´āļģ⎒āļœāļĢāļšāļē⎚ ⎀⎙āļļ⎊ āļļāˇŠâ€āļģāˇ€āˇŠāˇƒāļģāļē āļˇāˇāˇ€āˇ’āļ­āļē⎙āļąāˇŠ Google Play āļ¸āļ­ āļ¸āˇ’āļŊāļ¯āˇ“ āļœāļ­āˇŠ āˇāˇŠâ€āļģāˇ€āˇŠâ€āļēāļ´āˇœāļ­āˇŠāˇ€āļŊāļ§ āˇƒāˇ€āļąāˇŠ āļ¯āˇ’āļē ⎄⎐āļš.
eReaders āˇƒāˇ„ ⎀⎙āļąāļ­āˇŠ āļ‹āļ´āˇāļ‚āļœ
Kobo eReaders ⎀⎐āļąāˇ’ e-ink āļ‹āļ´āˇāļ‚āļœ āļ´āˇ’⎅⎒āļļāļŗ āļšāˇ’āļē⎀⎓āļ¸āļ§, āļ”āļļ āˇ€āˇ’āˇƒāˇ’āļąāˇŠ āļœāˇœāļąāˇ”⎀āļšāˇŠ āļļāˇāļœāˇ™āļą āļ”āļļ⎚ āļ‹āļ´āˇāļ‚āļœāļēāļ§ āļ‘āļē āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸ āˇƒāˇ’āļ¯āˇ” āļšāˇ… āļē⎔āļ­āˇ” āˇ€āˇš. āļ†āļ°āˇāļģāļšāļģ⎔ āļ‰-āļšāˇ’āļē⎀āļąāļēāļ§ āļœāˇœāļąāˇ” āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸āļ§ āˇ€āˇ’āˇƒāˇŠāļ­āļģāˇāļ­āˇŠāļ¸āļš āļ‹āļ¯āˇ€āˇ” āļ¸āļ°āˇŠâ€āļē⎃⎊āļŽāˇāļą āļ‹āļ´āļ¯āˇ™āˇƒāˇŠ āļ…āļąāˇ”āļœāļ¸āļąāļē āļšāļģāļąāˇŠāļą.