Modeling Carbon Fluxes, Net Primary Production and Light Utilization in Boreal Forest Stands

· Universal-Publishers
电子书
136
符合条件

关于此电子书

The use of satellite remote sensing for modeling net primary production (NPP) was evaluated in sixty boreal forest stands spanning a range of site conditions. The work included: (i) estimating annual phenological dynamics and photosynthetically active radiation (PAR) interception with remotely sensed spectral measurements, (ii) linking annually absorbed PAR (APAR) to measured NPP and quantifying variability in light use efficiency ("En"), (iii) evaluating sources of variability in "En" via mechanistic modeling of ecophysiology and associated carbon fluxes, particularly through analyses of respiratory carbon costs in relation to assimilation gains (the R: A ratio), (iv) assessing generalization of the results through an investigation of the evidence for evolutionary convergence in "En", the R: A ratio and assimilation per unit APAR (Eg).

The analyses showed that observed variability in "En" reflects a decoupling of PAR harvesting and utilization, primarily as a result of differences in the R: A ratio. Links between "En", the R: A ratio and standing above-ground biomass were related to differences the carbon (energy) costs associated with synthesis and maintenance of plant constituents, and longevity (i.e. the payback period on investment in carbon gain). Estimating the R: A ratio from above-ground biomass, in order to compensate for variability in "En", was found to be problematic owing primarily to covariation of R and A with the amount of respiring biomass (i.e. sapwood and foliage). The analyses also showed that the differences in carbon costs between functional types (plants with related life history traits) resulted in convergence on "Eg" rather than en. Variability in "Eg" was, however, introduced by stomatal control at some stressed sites. These findings were supported by the remote sensing and simulation modeling results, and the synthesis of work related to evolutionary ecology.

The primary conclusions are that variability in light utilization in these boreal forest stands was determined largely by respiratory carbon costs, and that NPP models based on light harvesting require augmentation with terms that reflect PAR utilization. Possible methods to address these issues, and their implications for NPP modeling over large areas, are discussed.

为此电子书评分

欢迎向我们提供反馈意见。

如何阅读

智能手机和平板电脑
只要安装 AndroidiPad/iPhone 版的 Google Play 图书应用,不仅应用内容会自动与您的账号同步,还能让您随时随地在线或离线阅览图书。
笔记本电脑和台式机
您可以使用计算机的网络浏览器聆听您在 Google Play 购买的有声读物。
电子阅读器和其他设备
如果要在 Kobo 电子阅读器等电子墨水屏设备上阅读,您需要下载一个文件,并将其传输到相应设备上。若要将文件传输到受支持的电子阅读器上,请按帮助中心内的详细说明操作。