Number Theory in Science and Communication: With Applications in Cryptography, Physics, Digital Information, Computing, and Self-Similarity, Edition 2

· Springer Series in Information Sciences Book 7 · Springer Science & Business Media
eBook
374
Pages

About this eBook

"Beauty is the first test: there is no permanent place in the world for ugly mathematics. " - G. H. Hardy Number theory has been considered since time immemorial to be the very paradigm of pure (some would say useless) mathematics. In fact, the Chinese characters for mathematics are Number Science. "Mathematics is the queen of sciences - and number theory is the queen of mathematics," according to Carl Friedrich Gauss, the lifelong Wunderkind, who himself enjoyed the epithet "Princeps Mathematicorum. " What could be more beautiful than a deep, satisfying relation between whole numbers. (One is almost tempted to call them wholesome numbers') In fact, it is hard to come up with a more appropriate designation than their learned name: the integers - meaning the "untouched ones". How high they rank, in the realms of pure thought and aesthetics, above their lesser brethren: the real and complex number- whose first names virtually exude unsavory involvement with the complex realities of everyday life! Yet, as we shall see in this book, the theory of integers can provide totally unexpected answers to real-world problems. In fact, discrete mathematics is taking on an ever more important role. If nothing else, the advent of the digital computer and digital communication has seen to that. But even earlier, in physics the emergence of quantum mechanics and discrete elementary particles put a premium on the methods and, indeed, the spirit of discrete mathematics.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.

Continue the series

More by Manfred R. Schroeder

Similar eBooks