Optimizing Databricks Workloads: Harness the power of Apache Spark in Azure and maximize the performance of modern big data workloads

· ·
· Packt Publishing Ltd
4.0
1 review
eBook
230
Pages

About this eBook

Accelerate computations and make the most of your data effectively and efficiently on DatabricksKey FeaturesUnderstand Spark optimizations for big data workloads and maximizing performanceBuild efficient big data engineering pipelines with Databricks and Delta LakeEfficiently manage Spark clusters for big data processingBook Description

Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud.

In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains.

By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently.

What you will learnGet to grips with Spark fundamentals and the Databricks platformProcess big data using the Spark DataFrame API with Delta LakeAnalyze data using graph processing in DatabricksUse MLflow to manage machine learning life cycles in DatabricksFind out how to choose the right cluster configuration for your workloadsExplore file compaction and clustering methods to tune Delta tablesDiscover advanced optimization techniques to speed up Spark jobsWho this book is for

This book is for data engineers, data scientists, and cloud architects who have working knowledge of Spark/Databricks and some basic understanding of data engineering principles. Readers will need to have a working knowledge of Python, and some experience of SQL in PySpark and Spark SQL is beneficial.

Ratings and reviews

4.0
1 review

About the author

Anirudh Kala is an expert in machine learning techniques, artificial intelligence, and natural language processing. He has helped multiple organizations to run their large-scale data warehouses with quantitative research, natural language generation, data science exploration, and big data implementation. He has worked in every aspect of data analytics using the Azure data platform. Currently, he works as the director of Celebal Technologies, a data science boutique firm dedicated to large-scale analytics. Anirudh holds a computer engineering degree from the University of Rajasthan and his work history features the likes of IBM and ZS Associates.

Anshul Bhatnagar is an experienced, hands-on data architect involved in the architecture, design, and implementation of data platform architectures, and distributed systems. He has worked in the IT industry since 2015 in a range of roles such as Hadoop/Spark developer, data engineer, and data architect. He has also worked in many other sectors including energy, media, telecoms, and e-commerce. He is currently working for a data and AI boutique company, Celebal Technologies, in India. He is always keen to hear about new ideas and technologies in the areas of big data and AI, so look him up on LinkedIn to ask questions or just to say hi.

Sarthak Sarbahi is a certified data engineer and analyst with a wide technical breadth and a deep understanding of Databricks. His background has led him to a variety of cloud data services with an eye toward data warehousing, big data analytics, robust data engineering, data science, and business intelligence. Sarthak graduated with a degree in mechanical engineering.

Rate this eBook

Tell us what you think.

Reading information

Smartphones and tablets
Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.
Laptops and computers
You can listen to audiobooks purchased on Google Play using your computer's web browser.
eReaders and other devices
To read on e-ink devices like Kobo eReaders, you'll need to download a file and transfer it to your device. Follow the detailed Help Centre instructions to transfer the files to supported eReaders.