Developing the Global Bioeconomy: Technical, Market, and Environmental Lessons from Bioenergy

· · ·
· Academic Press
電子書
220
符合資格

關於本電子書

Developing the Global Bioeconomy: Technical, Market, and Environmental Lessons from Bioenergy brings together expertise from three IEA-Bioenergy subtasks on pyrolysis, international trade, and biorefineries to review the bioenergy sector and draw useful lessons for the full deployment of the bioeconomy.

Despite the vast amount of politically driven strategies, there is little understanding on how current markets will transition towards a global bioeconomy. The question is not only how the bioeconomy can be developed, but also how it can be developed sustainably in terms of economic and environmental concerns. To answer this question, this book’s expert chapter authors seek to identify the types of biorefineries that are expected to be implemented and the types of feedstock that may be used.

They also provide historical analysis of the developments of biopower and biofuel markets, integration opportunities into existing supply chains, and the conditions that would need to be created and enhanced to achieve a global biomass trade system that could support a global bioeconomy. As expectations that a future bioeconomy will rely on a series of tradable commodities, this book provides a central accounting of the state of the discussion in a multidisciplinary approach that is ideal for research and academic experts, and analysts in all areas of the bioenergy, biofuels, and bioeconomy sectors, as well as those interested in energy policy and economics.

  • Examines the lessons learned by the bioenergy industry and how they can be applied to the full development of the bioeconomy
  • Explores different transition strategies and how the current fossil based and future bio-based economy are intertwined
  • Reviews the status of current biomass conversion pathways
  • Presents an historical analysis of the developments of biopower and biofuel markets, integration opportunities into existing supply chains, and the conditions that would need to be created and enhanced to achieve a global biomass trade system

關於作者

Patrick Lamers is a Systems Analyst with the Idaho National Laboratory (INL), stationed at the National Bioenergy Center in Golden, Colorado. His work on feedstock logistics and trade for the US Department of Energy’s BioEnergy Technologies Office supports the deployment and scale-up of the US advanced biofuel industry. Patrick’s academic experience spans from Karlsruhe Institute of Technology, Germany, to Lund University, Sweden, and Utrecht University, the Netherlands. He has been working for over ten years as a senior researcher and consultant across North America and Europe, and published extensively in the areas of global biomass markets and trade dynamics. As a project manager and principal investigator, he worked for multiple clients, including international agencies (e.g., the International Energy Agency and the European Commission), national government and non-governmental agencies across North America and Europe, and the private industry. He serves as a reviewer to several academic journals and is engaged in multiple international working groups and reports including the IPCC, REN21, and the IEA Bioenergy.

Erin Searcy is currently leading the Systems Analysis Platform at the INL. She originally joined INL in 2008 and has worked on a variety of biomass feedstock logistics projects since, primarily as a techno-economic analyst. Between 2012 and 2015, Erin was stationed at the US Department of Energy in Washington, DC, supporting the BioEnergy Technologies Office. Her academic degrees include a BS and MS in Engineering, as well as a Ph.D. in Mechanical Engineering from the University of Alberta, Canada. Prior to joing INL, Erin had worked as an Environmental Engineering consultant and acted as a sessional professor in the Faculty of Engineering at the University of Alberta, Canada.

Richard Hess is the Director for the Idaho National Laboratory Energy Systems and Technologies Division, which division addresses critical national energy challenges in biofuels/bioenergy, renewable electrical systems/grid, and hybrid renewable-nuclear systems. He led the developed of a biomass feedstock preprocessing and logistics program at INL and continues to serve as the Laboratory Relationship Manager for that program. This program focuses on the cost-effective use of lignocellulosic biomass crops and residues in biorefining operations, including biomass harvesting, handling, storage and transportation; and preprocessing biomass into suitable industrial grade bioenergy commodities through enhanced feedstock formulation, densification, and packaging for transportation. He also managed the design and construction of one of DOE’s five biomass demonstration units. Richard holds a Doctorate in Plant Science from Utah State University, and Master’s and Bachelor’s Science Degrees in Botany from Brigham Young University. Following Graduate School, Richard served as an Agriculture Congressional Science Fellow in the Washington, D.C. Office of Senator Thomas Daschel. In this role, he worked on several national agricultural issues-including new and industrial uses of agricultural products, federal grain inspection standards, plant variety protection, and other agricultural R&D policy issues.

Heinz holds a B.Sc. in Chemical Engineering and a Ph.D. in Chemistry. He is senior scientist at the Thünen-Institute of Agricultural Technology and visiting lecture at the University of Applied Science in Hamburg. Heinz is member of the German delegation for developing ISO13065, acts as evaluator for EU-BBI-JU, is vice-chair of the SETAC Europe LCA steering committee and was involved in drafting the German Biorefinery Roadmap. He is national representative for IEA Bioenergy Task 42 (Biorefining).Heinz’s research interests are in the area of engineering for sustainable development, which includes optimization of biotechnological and chemo-catalytic conversion processes of agricultural biomass and residues. He uses sustainability assessment, life cycle assessment and carbon footprint analysis of bio-based systems and products in order to steer the development of biomass conversion processes in the most promising direction already at an early development stage. His ultimate goal is to foster strategies for the sustainable use of biomass for non-food applications by providing advice to process developers but also policy makers.

為這本電子書評分

歡迎提供意見。

閱讀資訊

智慧型手機與平板電腦
只要安裝 Google Play 圖書應用程式 Android 版iPad/iPhone 版,不僅應用程式內容會自動與你的帳戶保持同步,還能讓你隨時隨地上網或離線閱讀。
筆記型電腦和電腦
你可以使用電腦的網路瀏覽器聆聽你在 Google Play 購買的有聲書。
電子書閱讀器與其他裝置
如要在 Kobo 電子閱讀器這類電子書裝置上閱覽書籍,必須將檔案下載並傳輸到該裝置上。請按照說明中心的詳細操作說明,將檔案傳輸到支援的電子閱讀器上。