Robot Brains: Circuits and Systems for Conscious Machines

Sold by John Wiley & Sons
2
Free sample

Haikonen envisions autonomous robots that perceive and understand the world directly, acting in it in a natural human-like way without the need of programs and numerical representation of information. By developing higher-level cognitive functions through the power of artificial associative neuron architectures, the author approaches the issues of machine consciousness.

Robot Brains expertly outlines a complete system approach to cognitive machines, offering practical design guidelines for the creation of non-numeric autonomous creative machines. It details topics such as component parts and realization principles, so that different pieces may be implemented in hardware or software. Real-world examples for designers and researchers are provided, including circuit and systems examples that few books on this topic give.

In novel technical and practical detail, this book also considers:

  • the limitations and remedies of traditional neural associators in creating true machine cognition;
  • basic circuit assemblies cognitive neural architectures;
  • how motors can be interfaced with the associative neural system in order for fluent motion to be achieved without numeric computations;
  • memorization, imagination, planning and reasoning in the machine;
  • the concept of machine emotions for motivation and value systems;
  • an approach towards the use and understanding of natural language in robots.

The methods presented in this book have important implications for computer vision, signal processing, speech recognition and other information technology fields. Systematic and thoroughly logical, it will appeal to practising engineers involved in the development and design of robots and cognitive machines, also researchers in Artificial Intelligence. Postgraduate students in computational neuroscience and robotics, and neuromorphic engineers will find it an exciting source of information.

Read more
Collapse
5.0
2 total
Loading...

Additional Information

Publisher
John Wiley & Sons
Read more
Collapse
Published on
Sep 27, 2007
Read more
Collapse
Pages
224
Read more
Collapse
ISBN
9780470517864
Read more
Collapse
Read more
Collapse
Best For
Read more
Collapse
Language
English
Read more
Collapse
Genres
Technology & Engineering / Electrical
Technology & Engineering / Robotics
Read more
Collapse
Content Protection
This content is DRM protected.
Read more
Collapse

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Presents pioneering and comprehensive work on engaging movement in robotic arms, with a specific focus on neural networks

This book presents and investigates different methods and schemes for the control of robotic arms whilst exploring the field from all angles. On a more specific level, it deals with the dynamic-neural-network based kinematic control of redundant robot arms by using theoretical tools and simulations.

Kinematic Control of Redundant Robot Arms Using Neural Networks is divided into three parts: Neural Networks for Serial Robot Arm Control; Neural Networks for Parallel Robot Control; and Neural Networks for Cooperative Control. The book starts by covering zeroing neural networks for control, and follows up with chapters on adaptive dynamic programming neural networks for control; projection neural networks for robot arm control; and neural learning and control co-design for robot arm control. Next, it looks at robust neural controller design for robot arm control and teaches readers how to use neural networks to avoid robot singularity. It then instructs on neural network based Stewart platform control and neural network based learning and control co-design for Stewart platform control. The book finishes with a section on zeroing neural networks for robot arm motion generation.

Provides comprehensive understanding on robot arm control aided with neural networks Presents neural network-based control techniques for single robot arms, parallel robot arms (Stewart platforms), and cooperative robot arms Provides a comparison of, and the advantages of, using neural networks for control purposes rather than traditional control based methods Includes simulation and modelling tasks (e.g., MATLAB) for onward application for research and engineering development

By focusing on robot arm control aided by neural networks whilst examining central topics surrounding the field, Kinematic Control of Redundant Robot Arms Using Neural Networks is an excellent book for graduate students and academic and industrial researchers studying neural dynamics, neural networks, analog and digital circuits, mechatronics, and mechanical engineering.

"This is teaching at its best!"

--Hans Camenzind, inventor of the 555 timer (the world's most successful integrated circuit), and author of Much Ado About Almost Nothing: Man's Encounter with the Electron (Booklocker.com)

"A fabulous book: well written, well paced, fun, and informative. I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly."

--Tom Igoe, author of Physical Computing and Making Things Talk

Want to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them!

Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques.

Discover by breaking things: experiment with components and learn from failure Set up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll need Learn about key electronic components and their functions within a circuit Create an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lock Build an autonomous robot cart that can sense its environment and avoid obstacles Get clear, easy-to-understand explanations of what you're doing and why
In just 24 sessions of one hour or less, Sams Teach Yourself Arduino Programming in 24 Hours teaches you C programmingon Arduino, so you can start creating inspired “DIY” hardwareprojects of your own! Using this book’s straightforward, step-by-stepapproach, you’ll walk through everything from setting up yourprogramming environment to mastering C syntax and features, interfacing your Arduino to performing full-fledged prototyping.Every hands-on lesson and example builds on what you’ve alreadylearned, giving you a rock-solid foundation for real-world success!

Step-by-step instructions carefully walk you through the most common Arduino programming tasks.

Quizzes at the end of each chapter help you test your knowledge.

By the Way notes present interesting information related to the discussion.

Did You Know? tips offer advice or show you easier ways to perform tasks.

Watch Out! cautions alert you to possible problems and give you advice on how to avoid them.

Learn how to...

Get the right Arduino hardware and accessories for your needs Download the Arduino IDE, install it, and link it to your Arduino Quickly create, compile, upload, and run your first Arduino program Master C syntax, decision control, strings, data structures, and functions Use pointers to work with memory—and avoid common mistakes Store data on your Arduino’s EEPROM or an external SD card Use existing hardware libraries, or create your own Send output and read input from analog devices or digital interfaces Create and handle interrupts in software and hardware Communicate with devices via the SPI interface and I2C protocol Work with analog and digital sensors Write Arduino C programs that control motors Connect an LCD to your Arduino, and code the output Install an Ethernet shield, configure an Ethernet connection, and write networking programs Create prototyping environments, use prototyping shields, and interface electronics to your Arduino
©2019 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google|Location: United StatesLanguage: English (United States)
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.