Permutation Tests: A Practical Guide to Resampling Methods for Testing Hypotheses

Springer Science & Business Media
Free sample

Permutation tests permit us to choose the test statistic best suited to the task at hand. This freedom of choice opens up a thousand practical applications, including many which are beyond the reach of conventional parametric sta tistics. Flexible, robust in the face of missing data and violations of assump tions, the permutation test is among the most powerful of statistical proce dures. Through sample size reduction, permutation tests can reduce the costs of experiments and surveys. This text on the application of permutation tests in biology, medicine, science, and engineering may be used as a step-by-step self-guiding reference manual by research workers and as an intermediate text for undergraduates and graduates in statistics and the applied sciences with a first course in statistics and probability under their belts. Research workers in the applied sciences are advised to read through Chapters 1 and 2 once quickly before proceeding to Chapters 3 through 8 which cover the principal applications they are likely to encounter in practice. Chapter 9 is a must for the practitioner, with advice for coping with real life emergencies such as missing or censored data, after-the-fact covariates, and outliers. Chapter 10 uses practical applications in archeology, biology, climatology, education and social science to show the research worker how to develop new permutation statistics to meet the needs of specific applications. The practitioner will find Chapter 10 a source of inspiration as well as a practical guide to the development of new and novel statistics.
Read more

Reviews

Loading...

Additional Information

Publisher
Springer Science & Business Media
Read more
Published on
Mar 9, 2013
Read more
Pages
228
Read more
ISBN
9781475723465
Read more
Read more
Best For
Read more
Language
English
Read more
Genres
Mathematics / Applied
Mathematics / General
Mathematics / Probability & Statistics / General
Medical / Biostatistics
Read more
Content Protection
This content is DRM protected.
Read more

Reading information

Smartphones and Tablets

Install the Google Play Books app for Android and iPad/iPhone. It syncs automatically with your account and allows you to read online or offline wherever you are.

Laptops and Computers

You can read books purchased on Google Play using your computer's web browser.

eReaders and other devices

To read on e-ink devices like the Sony eReader or Barnes & Noble Nook, you'll need to download a file and transfer it to your device. Please follow the detailed Help center instructions to transfer the files to supported eReaders.
Kilem L. Gwet
Max Kuhn
Book 998
Praise for the First Edition

". . . [this book] should be on the shelf of everyone interested in . . . longitudinal data analysis."
—Journal of the American Statistical Association

Features newly developed topics and applications of the analysis of longitudinal data

Applied Longitudinal Analysis, Second Edition presents modern methods for analyzing data from longitudinal studies and now features the latest state-of-the-art techniques. The book emphasizes practical, rather than theoretical, aspects of methods for the analysis of diverse types of longitudinal data that can be applied across various fields of study, from the health and medical sciences to the social and behavioral sciences.

The authors incorporate their extensive academic and research experience along with various updates that have been made in response to reader feedback. The Second Edition features six newly added chapters that explore topics currently evolving in the field, including:

Fixed effects and mixed effects models Marginal models and generalized estimating equations Approximate methods for generalized linear mixed effects models Multiple imputation and inverse probability weighted methods Smoothing methods for longitudinal data Sample size and power

Each chapter presents methods in the setting of applications to data sets drawn from the health sciences. New problem sets have been added to many chapters, and a related website features sample programs and computer output using SAS, Stata, and R, as well as data sets and supplemental slides to facilitate a complete understanding of the material.

With its strong emphasis on multidisciplinary applications and the interpretation of results, Applied Longitudinal Analysis, Second Edition is an excellent book for courses on statistics in the health and medical sciences at the upper-undergraduate and graduate levels. The book also serves as a valuable reference for researchers and professionals in the medical, public health, and pharmaceutical fields as well as those in social and behavioral sciences who would like to learn more about analyzing longitudinal data.

Eric Vittinghoff
This new book provides a unified, in-depth, readable introduction to the multipredictor regression methods most widely used in biostatistics: linear models for continuous outcomes, logistic models for binary outcomes, the Cox model for right-censored survival times, repeated-measures models for longitudinal and hierarchical outcomes, and generalized linear models for counts and other outcomes.

Treating these topics together takes advantage of all they have in common. The authors point out the many-shared elements in the methods they present for selecting, estimating, checking, and interpreting each of these models. They also show that these regression methods deal with confounding, mediation, and interaction of causal effects in essentially the same way.

The examples, analyzed using Stata, are drawn from the biomedical context but generalize to other areas of application. While a first course in statistics is assumed, a chapter reviewing basic statistical methods is included. Some advanced topics are covered but the presentation remains intuitive. A brief introduction to regression analysis of complex surveys and notes for further reading are provided. For many students and researchers learning to use these methods, this one book may be all they need to conduct and interpret multipredictor regression analyses.

The authors are on the faculty in the Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco, and are authors or co-authors of more than 200 methodological as well as applied papers in the biological and biomedical sciences. The senior author, Charles E. McCulloch, is head of the Division and author of Generalized Linear Mixed Models (2003), Generalized, Linear, and Mixed Models (2000), and Variance Components (1992).

From the reviews:

"This book provides a unified introduction to the regression methods listed in the title...The methods are well illustrated by data drawn from medical studies...A real strength of this book is the careful discussion of issues common to all of the multipredictor methods covered." Journal of Biopharmaceutical Statistics, 2005

"This book is not just for biostatisticians. It is, in fact, a very good, and relatively nonmathematical, overview of multipredictor regression models. Although the examples are biologically oriented, they are generally easy to understand and follow...I heartily recommend the book" Technometrics, February 2006

"Overall, the text provides an overview of regression methods that is particularly strong in its breadth of coverage and emphasis on insight in place of mathematical detail. As intended, this well-unified approach should appeal to students who learn conceptually and verbally." Journal of the American Statistical Association, March 2006

©2018 GoogleSite Terms of ServicePrivacyDevelopersArtistsAbout Google
By purchasing this item, you are transacting with Google Payments and agreeing to the Google Payments Terms of Service and Privacy Notice.