Python para análisis de datos

· Comercial Grupo ANAYA, S.A.
eBook
520
Páginas

Información sobre este eBook

Obtén el manual definitivo para manipular, procesar, limpiar y restringir conjuntos de datos en Python. Actualizado para Python 3.10 y pandas 1.4.0, esta tercera edición de Python para análisis de datos. Manipulación de datos con pandas, NyumPy y Jupyter está llena de casos prácticos, que permiten averiguar cómo resolver una amplia variedad de problemas de datos de una manera efectiva. Con su ayuda conocerás y aprenderás las versiones más recientes de pandas, NumPy, IPython y Jupyter.


Escrito por Wes McKinney, el creador del proyecto pandas, Python para análisis de datos es una introducción práctica y moderna a las herramientas de ciencia de datos que ofrece Python. Es ideal para analistas no versados en Python y para programadores que deseen ponerse al día en ciencia de datos y computación científica o ciencia computacional. GitHub alberga los archivos de datos empleados en el libro y otro material asociado.


Entre otras cosas, este libro permite:


* Utilizar Jupyter Notebook y el shell de IPython para explorar datos.

* Aprender funciones de NumPy básicas y avanzadas.

* Iniciarse en el manejo de las herramientas de análisis de datos de la librería pandas.

* Emplear herramientas flexibles para limpiar, transformar, combinar y remodelar datos.

* Crear visualizaciones informativas con matplotlib.

* Aplicar la función GroupBy de pandas para segmentar, desmenuzar y resumir conjuntos de datos.

* Analizar y manipular series de datos temporales regulares e irregulares.

* Aprender cómo resolver problemas reales de análisis de datos con ejemplos específicos y detallados.

Acerca del autor

Wes McKinney es desarrollador de software y empresario en Nashville, Tennessee. Tras obtener su título universitario en matemáticas en el Massachussets Institute of Technology (MIT) en 2007, empezó a trabajar en finanzas y economía cuantitativa en la compañía AQR Capital Management en Greenwich, Connecticut. Frustrado por las incómodas herramientas de análisis de datos que existían en ese momento, aprendió Python e inició lo que más tarde se convertiría en el proyecto pandas. Es un miembro activo de la comunidad de datos de Python y un defensor del uso de Python en análisis de datos, finanzas y aplicaciones de computación científica. Posteriormente, Wes fue cofundador y director ejecutivo de DataPad, cuyas instalaciones tecnológicas y personal fueron adquiridos por Cloudera en 2014. Desde entonces ha estado muy implicado en la tecnología Big data, y se ha unido a los comités de administración de los proyectos Apache Arrow y Apache Parquet en la Apache Software Foundation (ASF). En 2018 fundó Usra Labs, una organización sin ánimo de lucro centrada en el desarrollo de Apache Arrow, en asociación con RStudio y Two Sigma Investments. En 2021 ha creado el startup tecnológico Voltron Data, donde trabaja en la actualidad como director de tecnología.

Información sobre cómo leer

Smartphones y tablets
Instala la aplicación Google Play Libros para Android y iPad/iPhone. Se sincroniza automáticamente con tu cuenta y te permite leer contenido online o sin conexión estés donde estés.
Ordenadores portátiles y de escritorio
Puedes usar el navegador web del ordenador para escuchar audiolibros que hayas comprado en Google Play.
eReaders y otros dispositivos
Para leer en dispositivos de tinta electrónica, como los lectores de libros electrónicos de Kobo, es necesario descargar un archivo y transferirlo al dispositivo. Sigue las instrucciones detalladas del Centro de Ayuda para transferir archivos a lectores de libros electrónicos compatibles.