Real Analysis through Modern Infinitesimals

· Encyclopedia of Mathematics and its Applications āŠŠāŦāŠļāŦāŠĪāŠ• 140 · Cambridge University Press
āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•
587
āŠŠāŦ‡āМ

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ• āŠĩāŠŋāŠķāŦ‡

Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses.

āŠēāŦ‡āŠ–āŠ• āŠĩāŠŋāŠķāŦ‡

Nader Vakil is a Professor of Mathematics at Western Illinois University. He received his PhD from the University of Washington, Seattle, where he worked with Edwin Hewitt. His research interests centre on the foundation of mathematical analysis and applications of the theory of modern infinitesimals to topology and functional analysis.

āŠ† āŠ‡-āŠŠāŦāŠļāŦāŠĪāŠ•āŠĻāŦ‡ āŠ°āŦ‡āПāŠŋāŠ‚āŠ— āŠ†āŠŠāŦ‹

āŠĪāŠŪāŦ‡ āŠķāŦāŠ‚ āŠĩāŠŋāŠšāŠūāŠ°āŦ‹ āŠ›āŦ‹ āŠ…āŠŪāŠĻāŦ‡ āŠœāŠĢāŠūāŠĩāŦ‹.

āŠŪāŠūāŠđāŠŋāŠĪāŦ€ āŠĩāŠūāŠ‚āŠšāŠĩāŦ€

āŠļāŦāŠŪāŠūāŠ°āŦāПāŠŦāŦ‹āŠĻ āŠ…āŠĻāŦ‡ āŠŸāŦ…āŠŽāŦāŠēāŦ‡āП
Android āŠ…āŠĻāŦ‡ iPad/iPhone āŠŪāŠūāŠŸāŦ‡ Google Play Books āŠāŠŠ āŠ‡āŠĻāŦāŠļāŦāПāŦ‰āŠē āŠ•āŠ°āŦ‹. āŠĪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠāŠ•āŠūāŠ‰āŠĻāŦāП āŠļāŠūāŠĨāŦ‡ āŠ‘āŠŸāŦ‹āŠŪāŦ…āПāŠŋāŠ• āŠ°āŦ€āŠĪāŦ‡ āŠļāŠŋāŠ‚āŠ• āŠĨāŠūāŠŊ āŠ›āŦ‡ āŠ…āŠĻāŦ‡ āŠĪāŠŪāŠĻāŦ‡ āŠœāŦāŠŊāŠūāŠ‚ āŠŠāŠĢ āŠđāŦ‹ āŠĪāŦāŠŊāŠūāŠ‚ āŠĪāŠŪāŠĻāŦ‡ āŠ‘āŠĻāŠēāŠūāŠ‡āŠĻ āŠ…āŠĨāŠĩāŠū āŠ‘āŠŦāŠēāŠūāŠ‡āŠĻ āŠĩāŠūāŠ‚āŠšāŠĩāŠūāŠĻāŦ€ āŠŪāŠ‚āŠœāŦ‚āаāŦ€ āŠ†āŠŠāŦ‡ āŠ›āŦ‡.
āŠēāŦ…āŠŠāŠŸāŦ‰āŠŠ āŠ…āŠĻāŦ‡ āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°
Google Play āŠŠāŠ° āŠ–āŠ°āŦ€āŠĶāŦ‡āŠē āŠ‘āŠĄāŠŋāŠ“āŠŽāŦāŠ•āŠĻāŦ‡ āŠĪāŠŪāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠ•āŠŪāŦāŠŠāŦāŠŊāŦāŠŸāŠ°āŠĻāŠū āŠĩāŦ‡āŠŽ āŠŽāŦāаāŠūāŠ‰āŠāŠ°āŠĻāŦ‹ āŠ‰āŠŠāŠŊāŦ‹āŠ— āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠļāŠūāŠ‚āŠ­āŠģāŦ€ āŠķāŠ•āŦ‹ āŠ›āŦ‹.
eReaders āŠ…āŠĻāŦ‡ āŠ…āŠĻāŦāŠŊ āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ
Kobo āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠœāŦ‡āŠĩāŠū āŠ‡-āŠ‡āŠ‚āŠ• āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠĩāŠūāŠ‚āŠšāŠĩāŠū āŠŪāŠūāŠŸāŦ‡, āŠĪāŠŪāŠūāŠ°āŦ‡ āŠŦāŠūāŠ‡āŠēāŠĻāŦ‡ āŠĄāŠūāŠ‰āŠĻāŠēāŦ‹āŠĄ āŠ•āŠ°āŦ€āŠĻāŦ‡ āŠĪāŠŪāŠūāŠ°āŠū āŠĄāŠŋāŠĩāŠūāŠ‡āŠļ āŠŠāŠ° āŠŸāŦāаāŠūāŠĻāŦāŠļāŠŦāŠ° āŠ•āŠ°āŠĩāŠūāŠĻāŦ€ āŠœāŠ°āŦ‚āа āŠŠāŠĄāŠķāŦ‡. āŠļāŠŠāŦ‹āаāŦāПāŦ‡āŠĄ āŠ‡-āŠ°āŦ€āŠĄāŠ° āŠŠāŠ° āŠŦāŠūāŠ‡āŠēāŦ‹ āŠŸāŦāаāŠūāŠĻāŦāŠļāŦāŠŦāŠ° āŠ•āŠ°āŠĩāŠū āŠŪāŠūāŠŸāŦ‡ āŠļāŠđāŠūāŠŊāŠĪāŠū āŠ•āŦ‡āŠĻāŦāŠĶāŦāаāŠĻāŦ€ āŠĩāŠŋāŠ—āŠĪāŠĩāŠūāŠ° āŠļāŦ‚āКāŠĻāŠūāŠ“ āŠ…āŠĻāŦāŠļāŠ°āŦ‹.