Real Analysis through Modern Infinitesimals

¡ Encyclopedia of Mathematics and its Applications āļ´āˇœāļ­ 140 ¡ Cambridge University Press
āļ‰-āļ´āˇœāļ­
587
āļ´āˇ’āļ§āˇ”

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļœāˇāļą

Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses.

āļšāļģ⎊āļ­āˇ˜ āļ´āˇ’⎅⎒āļļāļŗ

Nader Vakil is a Professor of Mathematics at Western Illinois University. He received his PhD from the University of Washington, Seattle, where he worked with Edwin Hewitt. His research interests centre on the foundation of mathematical analysis and applications of the theory of modern infinitesimals to topology and functional analysis.

āļ¸āˇ™āļ¸ āļ‰-āļ´āˇœāļ­ āļ…āļœāļēāļąāˇŠāļą

āļ”āļļ āˇƒāˇ’āļ­āļą āļ¯āˇ™āļē āļ…āļ´āļ§ āļšāˇ’āļēāļąāˇŠāļą.

āļšāˇ’āļē⎀⎓āļ¸āˇš āļ­āˇœāļģāļ­āˇ”āļģ⎔

⎃⎊āļ¸āˇāļģ⎊āļ§āˇŠ āļ¯āˇ”āļģāļšāļŽāļą āˇƒāˇ„ āļ§āˇāļļ⎊āļŊāļ§āˇŠ
Android āˇƒāˇ„ iPad/iPhone ⎃āļŗāˇ„āˇ Google Play āļ´āˇœāļ­āˇŠ āļē⎙āļ¯āˇ”āļ¸ āˇƒāˇŠāļŽāˇāļ´āļąāļē āļšāļģāļąāˇŠāļą. āļ‘āļē āļ”āļļ⎚ āļœāˇ’āļĢ⎔āļ¸ āˇƒāļ¸āļŸ āˇƒāˇŠāˇ€āļēāļ‚āļšāˇŠâ€āļģ⎓āļē⎀ ⎃āļ¸āļ¸āˇ”⎄⎔āļģ⎊āļ­ āļšāļģāļą āļ…āļ­āļģ āļ”āļļāļ§ āļ•āļąāˇ‘āļ¸ āļ­āˇāļąāļš āˇƒāˇ’āļ§ āˇƒāļļ⎐āļŗāˇ’⎀ āˇ„āˇ āļąāˇœāļļ⎐āļŗāˇ’⎀ āļšāˇ’āļē⎀⎓āļ¸āļ§ āļ‰āļŠ āˇƒāļŊ⎃āļē⎒.
āļŊ⎐āļ´āˇŠāļ§āˇœāļ´āˇŠ āˇƒāˇ„ āļ´āļģ⎒āļœāļĢāļš
āļ”āļļāļ§ āļ”āļļ⎚ āļ´āļģ⎒āļœāļĢāļšāļē⎚ ⎀⎙āļļ⎊ āļļāˇŠâ€āļģāˇ€āˇŠāˇƒāļģāļē āļˇāˇāˇ€āˇ’āļ­āļē⎙āļąāˇŠ Google Play āļ¸āļ­ āļ¸āˇ’āļŊāļ¯āˇ“ āļœāļ­āˇŠ āˇāˇŠâ€āļģāˇ€āˇŠâ€āļēāļ´āˇœāļ­āˇŠāˇ€āļŊāļ§ āˇƒāˇ€āļąāˇŠ āļ¯āˇ’āļē ⎄⎐āļš.
eReaders āˇƒāˇ„ ⎀⎙āļąāļ­āˇŠ āļ‹āļ´āˇāļ‚āļœ
Kobo eReaders ⎀⎐āļąāˇ’ e-ink āļ‹āļ´āˇāļ‚āļœ āļ´āˇ’⎅⎒āļļāļŗ āļšāˇ’āļē⎀⎓āļ¸āļ§, āļ”āļļ āˇ€āˇ’āˇƒāˇ’āļąāˇŠ āļœāˇœāļąāˇ”⎀āļšāˇŠ āļļāˇāļœāˇ™āļą āļ”āļļ⎚ āļ‹āļ´āˇāļ‚āļœāļēāļ§ āļ‘āļē āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸ āˇƒāˇ’āļ¯āˇ” āļšāˇ… āļē⎔āļ­āˇ” āˇ€āˇš. āļ†āļ°āˇāļģāļšāļģ⎔ āļ‰-āļšāˇ’āļē⎀āļąāļēāļ§ āļœāˇœāļąāˇ” āļ¸āˇāļģ⎔ āļšāˇ’āļģ⎓āļ¸āļ§ āˇ€āˇ’āˇƒāˇŠāļ­āļģāˇāļ­āˇŠāļ¸āļš āļ‹āļ¯āˇ€āˇ” āļ¸āļ°āˇŠâ€āļē⎃⎊āļŽāˇāļą āļ‹āļ´āļ¯āˇ™āˇƒāˇŠ āļ…āļąāˇ”āļœāļ¸āļąāļē āļšāļģāļąāˇŠāļą.